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T
echnological supports for
people with disabilities are
usually referred to as assistive
technology. There has been
significant work in develop-

ing technologies to support people with
mobility and sensory disabilities.
Developing these tools for people with
cognitive disabilities has not been as wide-
spread. In this article, we briefly outline
causes and consequences of cognitive dis-
abilities and then concentrate on smart
home technologies. One such challenge in
smart homes is the desire to have inexpen-
sive components easily installed and self-
calibrating. We briefly mention work in
brain-computer interfaces (BCIs). 

BACKGROUND
Cognitive disability, sometimes known as
an intellectual disability, is the last dis-
ability to achieve any significant gov-
ernment attention and is fraught with
misconceptions. According to D.
Braddock at the University of Colorado,
cognitive disability is a substantial limita-
tion in one’s capacity to think, including
conceptualizing, planning, sequencing
thoughts and actions, remembering,
interpreting subtle social cues, and
manipulating numbers and symbols.

Common consequences of cognitive
disabilities include stigma and discrimina-
tion, social isolation and emotional prob-
lems, difficulty communicating, poverty
and unemployment, lack of support for
families, a growing digital divide, and
institutionalization.

Globally, people with cognitive dis-
abilities are starting to become self-
advocates. This is already common
among people with sensory and motor
disabilities. Key to this effort are the

ideas that people come first and that we
look at a person with a disability, not at
a disabled person. These ideas need to
be reflected in the assistive technolo-
gies. Why? Most assistive technologies
fail because the designers do not take
the person using the technology into
account. While most of us adapt readily
to new tools and technologies, this flexi-
bility is less common among people
with cognitive disabilities. Further, our
technologies are often part of a fashion
statement or a statement on our place
in culture. In other words, technologies
are part of the social zeitgeist. People
with disabilities are aware of many of
these issues, and yet the technological
devices designed for them are often ugly
and set them further apart from the rest
of society.

Cognitive disabilities can begin at any
age. Those whose causes are genetic, in
utero, or occur in early childhood tradi-
tionally have been called mental retarda-
tion and developmental disabilities
(MRDD) and are now being classified as
intellectual and developmental disabili-
ties (I/DD). Specific causes can be genet-
ic with key examples such as Down
syndrome, Williams syndrome, and frag-
ile X syndrome. The primary cause of
cognitive disabilities in utero is fetal
alcohol syndrome. Early childhood caus-
es include malnutrition and environ-
mental poisoning, e.g., mercury, lead,
and some pesticides. The primary causes
of cognitive disabilities in adolescence
and adulthood include traumatic brain
injury, stroke, and severe mental illness.
Alzheimer’s disease and other dementia
are the primary causes of cognitive dis-
abilities in older adults.

The 2006 distribution of conditions
causing cognitive disability in the United
States are I/DD (21%) at 4.76 million,

brain injury (27%) at 6.03 million, stroke
(4%) at .8 million, mental illness (29%) at
6.42 million, and Alzheimer’s (19%) at
4.23 million. In total, 22.24 million people
are affected [1]. Worldwide statistics are
not as detailed, but the estimates range as
high as 400 million people.

COMMON ISSUES
The need and access to assistive tech-
nologies are related to poverty and
unemployment. Most families with chil-
dren having I/DD live at or below the
poverty line. Thus, affordability of tech-
nology is very limited. In addition, the
wages of support personnel working with
people with cognitive disabilities is often
just barely above the poverty line. A con-
sequence is that many of these workers,
while truly caring for their charges, have
limited education and limited engage-
ment with technology. Thus, the care-
givers cannot be depended upon to
understand and adapt technologies for
the individuals they support.

A technological solution, no matter
how sophisticated, will not be effective.
Adaptability and customization are key to
any assistive technology and more so for
individuals with cognitive disabilities.

Assistive technologies come in all
shapes, sizes, costs, and degrees of
technological sophistication. We are
considering devices which require some
degree of signal processing. We will
concentrate on a limited selection of
new and emerging devices.

LOCATION-AWARE TECHNOLOGIES
Continuous activity monitoring for health
assessment and emergency response is a
major application area of location-aware
technologies. In particular, homes that
are retrofitted with a variety of sensors to
monitor and evaluate the activities andDigital Object Identifier 10.1109/MSP.2008.928315
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the state of the residents are becoming
the future of distributed health care and
delivery. These are called smart homes
and are of particular importance for the
aging population of the world.

Cognitive and motor function decline
due to various forms of dementia or
other neurological disorders is estimated
to affect over 34 million elderly world-
wide [2]. For such conditions, the early
detection of symptoms leading to a clini-
cal diagnosis, and timely intervention is
crucial. Consequently, the conventional
clinical practice of regular semiannual or
annual assessment of cognitive decline in
clinic visits is insufficient and error
prone due to day-to-day fluctuations in
subject behavior and performance.

Smart homes can provide the frequent,
even continuous, clinically relevant data.
These technologies can further be benefi-
cial in assisting with health care delivery
to patients at home, monitoring activities
such as medication adherence, and com-
pletion of necessary daily personal hygiene
activities as well as the detection of falls
and other emergencies is of interest.

Clearly, identification, localization,
and activity classification using unobtru-
sive sensor networks are fundamental to
the design of smart-home monitoring
systems. The signal processing and
ubiquitous computing communities are
already significantly involved in the
development of smart homes, and
important research outcomes are gener-
ated through experimentation at labora-
tory homes at many institutions.
However, it is critical to test technolo-
gies in real environments as subjects
tend to change behavior patterns in
lab environments even though it
might be inside a house or an apart-
ment. Researchers at the Oregon Health
and Science University (OHSU) have
created a living laboratory in which
approximately 300 seniors living inde-
pendently are volunteering to partici-
pate in research in their own homes [3].

Cost considerations become as
important as clinical accuracy require-
ments in developing in-home monitor-
ing systems. In order to maximize the
impact of the developed technologies in
the future of health care, widespread uti-

lization of these solutions is required.
Consequently, although expensive solu-
tions for localization exist, these are not
necessarily suitable for the problems
encountered in ambient intelligence and
ubiquitous activity monitoring.

IN-HOME LOCALIZATION
For in-home localization, available solu-
tions include infrared (IR) motion sen-
sors, radio frequency identification
(RFID) tags, acoustic- and vibration-
based localization, cameras, ultrasound,
contact and pressure sensor arrays, and
inertial navigation systems. A global
positioning system (GPS) is a common-
ly employed technique for outdoor
localization.

There are commercial RFID systems
available that provide access to a received
signal strength index (RSSI), which can
be used as a surrogate for time of arrival
in generating indoors triangulation solu-
tions using multiple receivers positioned
around the house. In our experience,
however, these signals do not exhibit
sufficiently high signal-to-noise ration
(SNR) and variability throughout a typi-
cal house for accurate position and veloc-
ity estimation using recursive Bayesian
state estimation techniques such as the
Kalman filter and particle filters. They
are, however, useful with reasonable
accuracy for identification since the uti-
lization of temporal information from the
subject trajectories can be incorporated
into the evidence for this purpose.

Motion and door contact sensors are
relatively cheap and could indicate
coarse localization information and,
combined with identity information from
RFID, could be useful for some applica-
tions that do not require precise extrac-
tion of activity details. In order to get
more detailed activity information, these
sensors are not sufficient, and body-worn
inertial sensors are necessary. This
approach has attracted considerable
interest. Various event detectors are
demonstrated using raw measurements
from accelerometers and gyroscopes.

In Figure 1(a) we show how a triangu-
lation model can be built using the RSSI
found in some commercial RFID- based
tracking systems. Using calibration data

collected at a large number of landmark
points throughout our lab apartment at
OHSU, an RBF-based RSSI distribution
map is obtained for each of the two receiv-
er units located at opposite corners of the
apartment. The mean value of recorded
RSSI values for each landmark is also
superimposed. While not shown explicitly
in Figure 1, the noise of RSSI measure-
ments at each landmark point is signifi-
cantly high, with the standard deviation
being comparable to the range of the max-
imum range of variation in average values.
Consequently, recursive Bayesian tracking
models based on such low quality meas-
urements, even with the help of informa-
tion fusion from IR motion sensors,
cannot meet clinically acceptable accuracy
levels of motion and gait analysis; howev-
er, for certain other applications, such as
emergency monitoring, the performance
can be acceptable.

For instance, the RSSI measurement
is accurate enough to keep track of iden-
tities of multiple individuals sharing an
apartment, and, in conjunction with a
hidden Markov model (HMM), the walk-
ing speed of individuals can be monitored
continuously over long periods of time
using restricted motion sensors installed
in a long hallway with sufficient traffic in
the house. Monitoring two people in such
a setting is demonstrated in Figure 2.
Specifically, for each sequence of motion-
sensor firings that occur at time t, the
RSSI sequence r(t) = [R(t − m�), . . . ,

R(t + m�)] is used as a feature vector in
the following Markov model over
sequence of states qi = {q−m, . . . , qm}
for the i th individual

λi(r) = Pr{r|qi}
= πi,q−m fi(R(t

− m�)|q−m)

m−1∏
k=−m

pi(qk+1|qk)

× fi(R(t + (k − m)�)|qk+1),

(1)

where πq1,i is the prior probability of
state q1 for individual i, pi(qk+1|qk) is
the HMM state transition probability of
individual i from qk to qk+1 , and
fi(rt|qk) is the likelihood of measuring
an RSSI value of rt for individual i at
state qk [4].



VIDEO MONITORING
Distributed cameras and the use of
advanced video processing and computer
vision techniques, although raising ques-
tions of privacy, present a convenient
solution to the three fundamental prob-
lems raised: identification, localization,
and activity classification. Specifically for
identification, face detection and identifi-

cation are key. For localization, multi-
camera-based object tracking based on
recursive Bayesian inference combined
with proper background-foreground
modeling and segmentation and cluster
tracking algorithms with occlusion reso-
lution are necessary. The reliable opera-
tion of these solutions in multiperson
environments (under no operator super-

vision) is required, and calibration must
be convenient for an unskilled technician
to be able to set up the system.
Furthermore, activity classification
requires body modeling and pose estima-
tion via temporal evidence assimilation.
Face identification and foreground track-
ing have been utilized for medication
adherence monitoring and fall detection.

[FIG1] (a) A lab apartment and (b) the corresponding calibrated received signal strength indices for two base RFID stations positioned at
opposite corners (courtesy of Eric Wan). 
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[FIG2] Monitoring of walking speed in an apartment with two residents, one diagnosed with Parkinson’s disease. The RSSI
measurements above are used in conjunction with an (a) HMM model to identify the person passing through the hallway where a
sequence of limited-view motion sensors are installed. (c) The walking speed estimates for each individual over a period of eight
months is shown as weekly averages.
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CALIBRATION
The calibration and modeling of sen-
sor networks that aim to fuse infor-
mation from a variety of unreliable
sources is an important problem that
stands in front of  the widespread
commercial feasibility of solutions
such as those illustrated in the previ-
ous section. It is important to over-
come the temptation to assume
mathematical models that lead to
simple implementations without care-
ful study. Especially in the case of off-
the-shel f ,  cheap,  and unrel iable
sensors, the signal processing engi-
neers must be cautious and careful in
determining model topologies and
parameters through rigorous experi-
mental verification, since documenta-
t ion is  not  a lways avai lable  at  a
desired level or detail. For instance,
the modeling of even a simple IR
motion detector could become a sig-
ni f icant  chal lenge i f  r igorously
attempted. It is tempting to assume
firing probability models that simply
decay as a one-sided Gaussian func-
tion of distance that incorporates
miss and false firing probabilities, or
even incorporate a  s imple cosine
dependency on the relative angular
position of the target, as commonly
done in binary motion sensor based
target tracking literature for theoreti-
cal convenience. However, one realizes
that when such simplistic models are
tested against experimental verification
data collected under controlled condi-
tions, they might not be accurate.

Similarly, for vision-based localiza-
tion and recursive Bayesian tracking,
one needs to determine through experi-
mental data under which vision-based
measurement error distributions are
stationary and how they depend on the
state vector of the target being tracked.
In the selection of target maneuver
models, random walk or constant
speed, or constant rate-of-turn type
models need to be cautiously employed;
preferably, a joint modeling-estimation
approach is employed as in the litera-
ture on simultaneous localization and
mapping (SLAM) in autonomous vehi-
cle navigation. For instance, one can

incorporate an adaptive dynamic accel-
eration model for subject trajectories
and the parameters of this model could
be included in the state vector to be
estimated (i .e. ,  position, velocity,
acceleration, and acceleration model
parameters). Consequently, the agile
trajectories of human motion could be
potentially captured with greater accu-
racy. As an illustration, the joint trajec-
tory-maneuver dynamics for a linear
first-order autoregressive acceleration
model becomes

d
dt

⎡
⎢⎢⎣

p(t)
v(t)
a(t)

vec(B)(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 B(t) 0
0 0 0 I

⎤
⎥⎥⎦

·

⎡
⎢⎢⎣

p(t)
v(t)
a(t)

vec(B)(t)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0

wa(t)
wB(t)

⎤
⎥⎥⎦ . (2)

Note that this is essentially equiva-
lent to including a latent model that
randomly perturbs  accelerat ion
dynamics and could be thought of as
a hierarchical graphical model for
maneuver modeling. The measure-
ment  equat ion for  such a  f i l ter,
assuming sensors that only respond
to the position of the subjects, is gen-
eral ly  a  condit ional  probabil ist ic
model  on the  form P(y(t)|p(t)) .
Under the reasonable assumption of
stat is t ica l ly  independent  sensor
measurements, this joint distribution
factorizes. A self-calibrating network
would in fact then create and opti-
mize a  latent  abstract  layout  for
allowable positions as well as trajec-
tories over time based on estimated
states. To this end, manifold learning
techniques could be employed. This
latent representation could minimize
cal ibrat ion requirements  during
installation, help regularize esti-
mates over time by building a sub-
ject-specific prior, and help identify
potential sensor failures when atypi-

cal measurements arise based on the
history of a sensor and its relation-
ship with others in the network.

An increasing body of evidence is
accumulating toward the verification of
the clinical usability of continuous
indoor monitoring data acquired by sen-
sor systems such as those described
above. The unreliable nature of the rela-
tively cheap sensors utilized brings
together problems associated with high
levels of measurement uncertainty
(noise), missing data, and unstructured
temporal sequences corresponding to
natural daily behavioral patterns of mul-
tiple known and unknown people (and
pets) in the house. These problems asso-
ciated with the observed phenomena and
the sensors pose exciting challenges for
signal processing and statistical infer-
ence, hence the literature has examples
of analysis approached from the per-
spective of a variety of disciplines
including statistical machine learning
and data mining.

NEURAL ENGINEERING AND
BRAIN COMPUTER INTERFACES
Neural engineering is a branch of bio-
engineering that draws components
from the disciplines of computational
and experimental neuroscience, elec-
trical engineering, neural tissue engi-
neering,  neurology,  and material
science. Primary goals include the
quantitative modeling of biological
neural networks in order to repair or
replace damaged tissue and reduce
lost function through the design of
neuroprosthetics [5]. While cochlear
implants have seen successful wide-
spread use worldwide, other applica-
tions of interest include the following: 

1) visual prostheses, or retinal
implants or microwires implanted in
the visual cortex  
2) cognitive prosthetics in the form of
circuitry that restores cognitive func-
tion by substituting equivalent cir-
cuitry in the brain to mimic local
input-output relationships, stimulat-
ing circuitry that activates or inhibits
local activity, for instance as in deep
brain stimulation to suppress tremors
in Parkinson’s



3) motor prosthetics with direct
cort ica l  control  through the
acquisition of brain activity using
invasive microelectrode arrays,
e lectrocort icography,  or  e lec-
troencephalography [6]–[8].
The motor prosthetics application

gives rise to the recently popularized
area of BCI/machine interface (BMI)
that presents numerous challenging
problems that are in the domain of the
signal processing community. While
BCI research is primarily focused on
restoring motor capabilities to persons
with neurological conditions that lead
to reduced or diminished motor abili-
ties, recently emerging applications
aim at enhancing and exploiting exist-
ing cognitive capabilities of humans as
well  as presenting an alternative
means of seamless human computer
interaction.

Research on brain interfaces to
enable a direct communication link
from the human brain or the peripher-
al nervous system to external devices,
such as robotic manipulators, artificial
limbs, or computing devices have been
ongoing since the 1960s and 1970s.
Significant results in the 1990s have
led to the current level of excitement
and interest.

Cortical plasticity, the ability of the
brain to reorganize itself due to expe-
rience and operant conditioning, is an
important property that yields the
promise of practical BCIs. In particu-
lar, it is expected, based on experimen-
tal evidence, that over an extended
period of usage the brain will be able
to interpret the artificial interface as a
natural extension of the physical self,
thus creating a representation that
improves with experience, leading to
increased accuracy and task perform-
ance [9]–[11]. Open challenges in this
domain include the coadaptation of
the brain and the interface, develop-
ment of robust learning algorithms
under label uncertainty (since ground
truth labels for brain activity are not
generally available), and the extrac-
tion and selection of most informative
features for various modalities and
applications.

CHALLENGES
For widespread commercial application
and in order to keep installation and
maintenance costs low, it is desirable
that multimodal sensor nets self-cali-
brate in two senses: i) learn the layout of
the house it is installed in and ii) learn
the movement patterns of its residents.
These are in fact coupled since the
learned layout of the house will be influ-
enced by the distribution of trajectories
executed by the residents.

It is not feasible to expect that a very
precise calibration of all relative sensor
locations and orientations can be made
during installation in a short time with
little effort. Therefore, from the joint
sensor activity, one could infer an
abstract layout of the environment
based on jointly detected movement
patterns. For instance, two motion sen-
sors could discover over time that they
might have a common area that they
detect and their respective individual
exclusive coverage areas, simply by sta-
tistically analyzing their joint firing
patterns. Similar information could be
extracted for any sensor pair. In fact,
this information could be used to
detect sensor failures.

The purpose of continuous monitor-
ing is to detect unusual events and
departures from established patterns
even if it is slowly happening. In any
case, one needs to build a probabilistic
model of likely and routine observation
patterns. However, such modeling
could be done at some abstract level
(using appropriate latent variable
approaches) so that even though the
daily routines on consecutive days are
not precisely identical, the model can
indicate that the measured activity pat-
terns are within the normal paradigm.
Similar arguments can be made for
body-worn or otherwise carried (on a
cane) inertial sensors.

Developing new signal and image
processing techniques is often driven by
specific problem classes. Assistive tech-
nology for people with cognitive disabili-
ties provides a very challenging class of
problems for statistical signal processing.
In this article, we have only touched on a
few of the possibilities. From learning on

manifolds to statistical inference and
data fusion, the applications are broad
and the problems challenging.
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