
Adaptive Motion Estimation Schemes Using Maximum
Mutual Information Criterion

Jing Zhao Dapeng Wu Deniz Erdogmus Yuguang Fang

Zhihai He ∗

Abstract

We consider the motion estimation problem in video coding. In our previous

work [10], we proposed a new motion estimation method where motion estimation

is formulated as an optimization problem and an adaptive system under the mini-

mum error entropy criterion is used for motion estimation. In this paper, we develop

an adaptive system under the criterion of maximum mutual information to address

the motion estimation problem. Our proposed motion estimation algorithms have

very low encoding complexity and hence are ideally suited for wireless video sensor

networks where limited bandwidth, restricted computational capability, and limited

battery power supply impose stringent constraints on the video encoding system.
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1 Introduction

The last several years see a surging interest in transmission of video over wireless networks,

which leads to considerable increase in the use of mobile communication devices equipped

with video cameras. Many of the mobile communication devices are small and battery

operated. Therefore they possess very limited power and low computation capability, which

pushes the constant need for video compression algorithms of higher computation efficiency

and coding efficiency.

To achieve higher efficiency in the video coding system, intra-frame coding and inter-

frame coding are employed to reduce spatial redundancy within a single frame and temporal

redundancy between adjacent frames respectively. As a key component of most video com-

pression systems, motion estimation exploits the temporal redundancy by predicting the

subsequent frames from reference frames. In a typical video system, motion estimation con-

stitutes 70% of the computation load in an encoder [1]. Therefore, it is critical for a motion

estimation scheme to achieve low computational complexity for resource-constrained wireless

video applications.

Among all motion estimation methods, one important category is a pixel-based approach,

where motion vectors are estimated for every pixel. Then each pixel can be predicted from

the previously coded reference frame based on the motion vector of each pixel. The prediction

error and the motion vectors are transmitted or stored for the reconstruction of the frames.

Another major category is a block-based approach, which is also the most widely used mo-

tion estimation technique in various video compression standards. In block-based schemes,

each video frame is divided into square blocks of equal size. Within each block, all the pixels

are assumed to undergo the same translational motion specified by the motion vector of

this block. Therefore each block can be predicted from the previously coded reference frame

based on the motion vector of the block. And the resulting prediction error is coded with

intra-frame coding techniques. The motion vector is estimated by searching for the best

matching block within a search window centered at the corresponding block in the reference

frame.

In wireless video applications, an exhaustive block match algorithm (EBMA) might be

neither realistic due to its formidable computation complexity, nor cost-effective as the mo-
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tion is not completely random. Many algorithms were developed to perform motion estima-

tion with reduced computational complexity, among which are two-dimensional logarithmic

(TDL) search [4], block-based gradient descent search [6], three-step search [5], a new three-

step search (TSS) [8], the four-step (4SS) search [7], to name a few.

None of the block-based motion estimation algorithms mentioned above effectively utilizes

the previous knowledge gained in calculating the motion vectors from one frame to the next.

For each step of search, memory of the previous motion vectors is erased and initial conditions

reset.

To fully utilize the information gained from the past frames for the estimation of future

frames, one solution is to formulate the motion estimation problem as an adaptive filtering

problem. In such a video compression system, motion vectors are modeled by an adaptive

system, while the traditional approach does not attempt to model the motion vectors.

Based on this system, we present in this paper a new approach to determine the motion

vector in an information-theoretic framework. The advantage of our scheme lies mainly in

the extremely low computation complexity it achieves. Furthermore, since the motion vector

model is to be replicated at the decoder given knowledge about the model and the initial

conditions, there is no need to transmit motion vectors. Therefore it provides savings in

bandwidth on top of the saving in computation.

The remainder of the paper is organized as follows. In Section 2, we introduce an adap-

tive motion estimation system and the maximum mutual information criterion. Section 3

presents our schemes based on the system framework and optimization criterion. The pixel-

based maximum mutual information scheme (PMaxMI) and block-based maximum mutual

information method (BMaxMI) will be described in Section 3.1 and Section 3.2 respectively,

which is followed by the computational complexity analysis in Section 3.3. In Section 4,

we present the simulation results in terms of root mean squared error (RMSE). Section 5

concludes the paper.
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2 Adaptive Motion Estimation System under Maxi-

mum Mutual Information Criterion

The organization of this section is as below. We first formulate the motion estimation

problem as an adaptive prediction problem in Section 2.1. Then, we introduce the general

notion of mutual information and the maximum mutual information criterion in Section 2.2.

2.1 Adaptive Motion Estimation Approach

Consider the block diagram of a general adaptive prediction system in Fig. 1.

At some discrete time n+1, the past frame of the video sequence f(n) serves as the filter

input, while the present frame of the sequence f(n + 1) serves as the desired response. The

filter produces an output, fp(n + 1). This output is the best estimate of the current value

f(n + 1) given f(n) and motion vector d(n). M is the known mapping function of the filter.

Our object is to search for the best d(n) based on the values of f(n) and f(n + 1), so that

the pre-defined cost function J of f(n) and f(n + 1) is optimized.

p
f(n+1)

Delay
+

−

e(n+1)

(p n+1))ff(n+1),J(

f(n) f (n+1)pf (n+1)=M(f(n),d(n))

Figure 1: Adaptive Motion Estimation System Diagram

Thus the motion estimation problem can be formulated as follows:

fp(n + 1) = M(f(n), d(n)) (1)

e(n + 1) = f(n + 1) − fp(n + 1) (2)

fr(n + 1) = fp(n + 1) + e(n + 1) (3)
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d(n + 1) = d(n) + η
∂J

∂d(n)
, (4)

where η is a user-defined fixed parameter (used as a step size).

In this paper, we will focus on motion estimation and assume that lossless transmission

is used for error signal so that the image can be reconstructed perfectly. In reality, due to

bandwidth restriction, the error signal is quantized and it leads to error accumulation. This

problem can be solved by introducing intra frames periodically.

Given the system formulation in Equation (1), if the cost function takes the form of mean

square of the error signal e (MSE), we can use the popular least mean square (LMS) algorithm

to solve the problem. If the cost function takes the form of the entropy of the error signal e,

we can use the Minimum Error Entropy (MEE) method proposed in [10]. Motivated by all

these works, we used the maximum mutual information criterion to develop our pixel-wise

and block-wise motion estimation schemes. The intuition behind using the maximum mutual

information criterion is that mutual information is a good measurement of the discrepancy

or dependency between two data sources. In our application scenario, when the mutual

information between the original frame and the predicted frame is maximized, the predicted

frame fp(n + 1) preserves the most information of the real frame f(n + 1).

However, there are no analytical methods to calculate mutual information without pre-

suming knowledge of prior probability density function (pdf). Therefore we use a non-

parametric pdf estimator with Parzen Windowing for the estimation of mutual information.

This combination yields an estimator simple to compute without imposing any assumptions

about the pdf of the data. Thus the method can manipulate mutual information as straight-

forwardly as the mean square error (MSE) or error entropy. Next, we will introduce the

maximum mutual information criterion.

2.2 Maximum Mutual Information Criterion

This section is organized as follows. First, a brief review of non-parametric pdf estimator

with Parzen windowing is given in Section 2.2.1. It is followed by the definition of mutual

information as the cost function for the motion estimation system in Section 2.2.2, which

will facilitate the derivation of motion estimation schemes in Section 3.
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2.2.1 Non-parametric pdf estimator

Given N pairs of samples for random variables x and y, the pdf of the 2-D random vector

z = [x, y]T can be approximated by Parzen windowing estimation with a two-dimensional

Gaussian kernel of mean zero and variance matrix Σ,

pX,Y (x, y) =
1

N

N∑
i=1

κΣ(x − xi, y − yi) (5)

where κΣ is the Gaussian kernel in Parzen windowing and Σ represents the size of the kernel.

Similarly, the marginal pdf of random variable x, y can be approximated with the sum

of a one-dimensional Gaussian kernel located on the samples of x and y as

pX(x) =
1

N

N∑
i=1

κσ2
X
(x − xi) (6)

and

pY (y) =
1

N

N∑
i=1

κσ2
Y
(y − yi) (7)

where σ2
X = Σ11 and σ2

Y = Σ22 are the kernel variance of x and y respectively. We will use

Σ′ = Σ−1 to represent the inversion of Σ.

The pdf estimators above are solely based on the data without assuming any a priori

knowledge of the distribution of the data obtained. They are to be used in the development

of the mutual information estimator in next section.

2.2.2 Mutual Information and its Non-parametric Estimator

In the signal processing area, mutual information is often used as a measurement of the

similarity and dependence between different data sources.

For two random variable x and y, the mutual information is defined as

Is(X; Y ) = −
∫ ∫

pX,Y (x, y)log
pX(x)pY (y)

pX,Y (x, y)
dxdy (8)
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where pX,Y (x, y) is the joint pdf of x, y, and pX(x) and pY (y) are the marginal PDF’s of x,

y respectively. Equation (8) can be simplified as

Is(X; Y ) = −E(log
pX(x)pY (y)

pX,Y (x, y)
) (9)

where the expectation E is with respect to pX,Y (x, y).

In [2], a stochastic gradient estimator was developed by employing the standard com-

plexity reduction techniques to Renyi’s Entropy by considering only part of the data set.

By applying the same technique, when only 1 pair of subsequent samples of (x, y)T at the

instants n + 1 and n are available, a non-parametric estimator for mutual information is

obtained

Is(x, y) ≈ 1

N

N∑
n=1

log
κΣ(xn+1 − xn, yn+1 − yn)

κΣ11(xn+1 − xn)κΣ22(yn+1 − yn)
(10)

Thus by exploiting the Parzen windowing technique, the estimator for mutual information

solely based on the data without assuming any a prior knowledge of the distribution of the

data is obtained. In the next section, a stochastic gradient estimator is developed by applying

the complexity reduction techniques in [2, 3].

3 Schemes Based on Maximum Mutual Information

Criterion

Depending on the scale we are looking at, we can apply this technique of simple-to-calculate

entropy estimator on the pixel level, thus generating the Pixel-based Maximum Mutual Infor-

mation(PMaxMI) scheme, or on the block level, thus generating the Block-based Maximum

Mutual Information (BMaxMI) scheme, which will be discussed in Section 3.1 and Section

3.2 respectively. The complexity analysis will be presented in Section 3.3.

3.1 Pixel-based Maximum Mutual Information Scheme (PMaxMI)

Considering the motion estimation problem on pixel level, the problem statement can be

specified as follows:
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Let f(p, n) denote the image intensity at spatio-temporal position (p, n), where p = [x, y]

is the pixel location in 2-dimensional space, n is the time index. Given two subsequent

frames f(n) and f(n + 1), a motion vector (MV) d(p, n) = [dx(p, n), dy(p, n)] is defined for

each pixel as the 2-D vector field that maps the point in f(n) onto their corresponding

location in f(n + 1). Our goal is to find an estimate of d for each pixel based on values of

f(n) and f(n + 1), so that the pre-defined cost function J , the mutual information between

the predicted frame and the real frame in this case, is maximized. The modified system

diagram is shown below.

f(p,n+1),

(fp

(fp p ,n+1)

(fp p ,n+1))

f(p,n)f(p,n+1)
Delay

+
−

e(p, n+1)

 sI (

p ,n+1)=f(p+d,n)

Figure 2: Pixel-based Maximum Mutual Information Motion Estimation System Diagram

The motion estimation system described above can be modified as as follows

fp(p, n + 1) = f(p + d(p, n), n) (11)

e(p, n + 1) = f(p, n + 1) − fp(p, n + 1) (12)

e′(p, n + 1) = Q[e(p, n + 1)] (13)

fr(p, n + 1) = fp(p, n + 1) + e′(p, n + 1) (14)

d(p, n + 1) = d(p, n) + η
∂J

∂d(p, n)
(15)

where Q[·] in (13) is a quantization function.

As shown in Fig. 2, the filter input is the pixel intensity of the most recent frame,

f(p, n). For the adaptive filter, the desired output is the pixel intensity of the present frame
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f(p, n + 1). At some discrete time, n+1, the output of the filter, fp(p, n + 1), is the estimate

of the f(p, n + 1) given its most recent values f(p, n). The estimation error, e(p, n + 1)

is defined as the difference between the filter output fp(p, n + 1), and the desired output

f(p, n + 1), which will be transmitted and used for the reconstruction of the frame in the

decoder side. The cost function I(f(p, n+1), fp(p, n+1)) is the mutual information between

the predicted intensity fp(p, n + 1) and real intensity f(p, n + 1) for each pixel,

J(fp(p, n), f(p, n)) = Is(fp(p, n), f(p, n)) (16)

which can be estimated as Equation (10).

Suppose we are given only the current sample f(p, n+1) and the previous sample f(p, n),

by applying the same technique as in [2], a non-parametric stochastic estimator for mutual

information Is is obtained in the following step:

For the current sample n + 1, letting x(n + 1) = fp(p, n + 1) and y(n + 1) = fp(p, n + 1)

in Equation (11), we obtain the cost function in Fig. 2 based on the most recent frames at

n and n + 1 only, i.e.,

J(fp(p, n + 1), f(p, n + 1))

= log
κΣ(fp(p, n + 1) − fp(p, n), f(p, n + 1) − f(p, n))

κσ2
fp

(fp(p, n + 1) − fp(p, n))κσ2
f
(f(p, n + 1) − f(p, n))

(17)

where fp(p, n + 1) can be obtained from Equation (1) based on the previous frame f(p, n)

and the motion vector d(p, n).

The parameter to determine is d(p, n). So the gradient of this expression with respect to

d(p, n) is needed for updating. Note that d(p, n− 1) is a known constant at this time, since

it is the displacement from the previous frame.

To simplify the representation of the following discussion, let

σ2
fp

= Σ11 (18)

σ2
f = Σ22 (19)

K1 = κΣ(fp(p, n) − fp(p, n − 1), f(p, n) − f(p, n − 1)) (20)
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K2 = κΣ11(fp(p, n) − fp(p, n − 1)) (21)

K3 = κΣ22(f(p, n) − f(p, n − 1)). (22)

Then, Equation (17) is simplified as

J(fp(p, n + 1), f(p, n + 1)) = log K1 − log K2 − log K3 (23)

Among the three terms, only K1 and K2 depend on d(p, n). Thus, the partial derivatives of

K1 and K2 with respect to d(p, n) are obtained as

∂J

∂d(p, n)
=

∂K1

∂d(p,n)

K1
−

∂K2

∂d(p,n)

K2
(24)

where

∂K1

∂d(p, n)
=

∂κΣ(fp(p, n) − fp(p, n − 1), f(p, n) − f(p, n − 1))

∂d(p, n)
=

−κΣ(fp(p, n) − fp(p, n − 1), f(p, n) − f(p, n − 1))×
((Σ−1

12 + Σ−1
21 )(f(p, n + 1) − f(p, n))+

2Σ−1
22 (f(p + d(p, n), n) − f(p + d(p, n − 1), n − 1)))×

(f(p + d(p, n) − f(p + d(p, n − 1), n − 1))×[
(f(p + e1, n) − f(p − e2, n))/2
(f(p + e1, n) − f(p − e2, n))/2

]
(25)

and

∂K2

∂d(p, n)
=

∂κΣ11(fp(p, n) − fp(p, n − 1))

∂d(p, n)

= − 1

σ2
fp

κσfp
(fp(p, n) − fp(p, n − 1))×

(f(p + d(p, n) − f(p + d(p, n − 1), n − 1))×[
(f(p + e1, n) − f(p − e2, n))/2
(f(p + e1, n) − f(p − e2, n))/2

]
(26)

which leads to a simple expression of the stochastic gradient:

∂J

∂d(p, n)
=

(−Σ−1
11 (f(p + d(p, n), n) − f(p + d(p, n − 1), n − 1))−

((Σ−1
12 + Σ−1

21 )(f(p, n + 1) − f(p, n))+
2Σ−1

22 (f(p + d(p, n), n) − f(p + d(p, n − 1), n − 1)))×
(f(p + d(p, n)) − f(p + d(p, n − 1), n − 1)))×[

(f(p + e1, n) − f(p − e2, n))/2
(f(p + e1, n) − f(p − e2, n))/2

]
(27)
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where e1 = [1, 0]T , e2 = [0, 1]T .

By far we have obtained a stochastic gradient estimator for the mutual information with

respect to a motion vector by following a methodology similar to the LMS algorithm and

the minimum error entropy algorithm [2] and [10]. By substituting the gradient obtained

from Equation (27) in Equations (1) – (4), and imposing a smoothness constraint that the

neighboring motion vectors cannot differ by more than a pre-determined threshold, we have

defined completely Pixel-based Maximum Mutual Information (PMaxMI) motion estimation

scheme.

3.2 Block-based Maximum Mutual Information Scheme (BMaxMI)

Considering the motion estimation problem on block level, the problem statement can be

specified as follows:

Given an image which can be divided into B square blocks of S pixels each. The intensity

of each pixel in this image is denoted uniquely with f(pb
s, n). The spatio-temporal position

of one pixel is denoted with (pb
s, n), where b is the index of the block, s is the index of the

pixel within the bth block, and n is the time index. Given two successive frames f(n + 1)

and f(n), a motion vector db(n) = [dx, dy]T is defined for the bth block as the 2-D vector

field that maps the blocks in f(n) onto their corresponding location in f(n + 1). Our goal

is to find an estimate d̂b for each block based on values of f(n + 1) and f(n), so that some

pre-defined object function J is optimized.

e(p  , n+1)
p p ,n+1)( b

(p p ,n+1)b

Delay
+

−b b

f   b

b

S

f(p ,n+1) f(p  ,n)
b

p
bf (p ,n+1)=f(p  +d,n)

I (f(p , n+1),

f

Figure 3: Block-based Maximum Mutual Information Motion Estimation System Diagram

The block diagram of a general adaptive prediction system is shown in Fig. 3. For the bth

block, the filter input is the intensity function of the most recent frame, f(pb
s, n). The desired

output of the adaptive filter is the intensity function of the present frame f(pb
s, n + 1). At

some discrete time, n+1, the output of the filter, fp(p
b
s, n+1), is the estimation, or prediction
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of the f(pb
s, n + 1) given its most recent values f(pb

s, n). The estimation error, e(pb
s, n + 1)

is defined as the difference between the filter output fp(p
b
s, n + 1), and the desired output

f(pb
s, n + 1). J(fp(p

b
s, n + 1), f(pb

s, n + 1)) is the optimization criterion, which is a function

of fp(p
b
s, n + 1) and f(pb

s, n + 1) .

For spatio-temporal position (pb
s, n), the motion estimation problem can be expressed as

follows

J(fp(p
b
s, n + 1), f(pb

s, n + 1)) = Is(fp(p
b
s, n + 1), f(pb

s, n + 1)) (28)

fp(p
b
s, n + 1) = f(pb

s + db(n), n) (29)

e(pb
s, n + 1) = f(pb

s, n + 1) − fp(p
b
s, n + 1) (30)

e′(pb
s, n + 1) = Q[e(pb

s, n + 1)] (31)

fr(p
b
s, n + 1) = fp(p

b
s, n + 1) + e′(pb

s, n + 1) (32)

db(n + 1) = db(n) + η
∂J

∂db(n)
(33)

where Q[·] in (31) is a quantization function.

Similarly, a stochastic gradient estimator must be developed in order to apply the maxi-

mum mutual information criterion in our problem. By utilizing the same complexity reduc-

tion techniques to mutual information entropy of N samples of random variable [x, y]T , a

non-parametric stochastic estimator for mutual information is obtained:

Substituting fp(p
b
s, n + 1) and f(pb

s, n + 1) for x and y respectively and the block size S

for sample number N in Equation (10), we obtain the cost function for the bth block based

on the most recent frames only,

Is(fp(p
b
s, n + 1), f(pb

s, n + 1)) (34)

≈ 1

S

S∑
s=1

log
κΣ(f(pb

s, n) − f(pb
s, n − 1), fp(p

b
s, n) − fp(p

b
s, n − 1))

κΣ11(f(pb
s, n) − f(pb

s, n − 1))κΣ22(fp(pb
s, n) − fp(pb

s, n − 1))
(35)
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Thus, we can obtained the derivative of the cost function J with respect to the motion

vector d for the bth block following this steps. Let

K1,s = κΣ

[
f(pb

s, n + 1) − f(pb
s, n)

f(pb
s + db(n), n) − f(pb

s + db(n − 1), n − 1)

]
(36)

K2,s = κΣ22(f(pb
s + db(n), n) − f(pb

s + db(n − 1), n − 1)) (37)

K3,s = κΣ11(f(pb
s, n) − f(pb

s, n − 1)) (38)

Therefore,

Is(fp(p
b, n + 1), f(pb, n + 1))

=
1

S
(

S∑
s=1

log K1,s −
S∑

s=1

log K2,s −
S∑

s=1

log K3,s) (39)

Similarly, among the three terms, K3,s does not depend on d.

∂logK1,s

∂d
=

−1

K1,s
((σ−1

12 + σ−1
21 )(f(pb

s, n + 1) − f(pb
s, n)) + 2σ−1

22

× (f(pb
s + db(n), n) − f(pb

s + db(n − 1), n − 1)))

× κΣ(f(pb
s + db(n), n) − f(pb

s + db(n − 1), n − 1))

× 1

2
×

[
(f(pb

s, n + 1) − f(pb
s, n))

(f(pb
s + db(n), n) − f(pb

s + db(n − 1), n − 1))

]
(40)

and

∂logK2,s

∂d
=

−1

K2,s

1

Σ22

× (f(pb
s + db(n), n) − f(pb

s + db(n − 1), n − 1))

× κσ2
22

(f(pb
s + db(n), n) − f(pb

s + db(n − 1), n − 1))

× 1

2
×

[
f(pb

s + e1, n) − f(pb
s − e1, n)

f(pb
s + e2, n) − f(pb

s − e2, n)

]
(41)
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where e1 = [1, 0]T , e2 = [0, 1]T .

Therefore, the stochastic gradient to be used for the update of the motion vector is

∂Is(fp(p
b
s, n + 1), f(pb

s, n + 1))

∂d(pb
s, n)

=
1

S

S∑
s=1

∂K1,s

∂d(pb
s, n)

1

K1,s
− 1

S

S∑
s=1

∂K2,s

∂d(pb
s, n)

1

K2,s

(42)

The result can be obtained by substituting
∂K1,s

∂d(pb
s,n)

and
∂K2,s

∂d(pb
s,n)

with Equations (40) and (41).

So far we have obtained an stochastic gradient estimator for the cost function J with

respect to motion vector db for each block. By substituting Equation (42) in Equations (28)

– (33), and imposing a smoothness constraint that the neighboring motion vectors cannot

differ by more than a pre-determined threshold, we obtain the Pixel-based Minimum Error

Entropy (BMaxMI) motion estimation scheme.

3.3 Computation Complexity Analysis

Assuming the image size is M ×M , with a search range of R×R and a block size of B ×B

we proceed to calculate the number of operations required per pixel.

Here we assume that the above operations can be executed in a single instruction cycle.

This is justified because the current DSP and FPGA technology can perform all the opera-

tions, except the exponential operation, in a single cycle. The exponential operation can be

efficiently implemented using an 8-bit table lookup which also can be executed in a single

instruction cycle.

Table 1 summarizes the number of additions, subtractions, exponentials, absolute values,

multiplications and conditionals (that is, ‘if’ statements) required by the algorithm at the

encoder [5, 6, 9].

A snapshot of Table 1 is provided in Table 2 for illustration for the case when R = 16

and B = 3, assuming all the above operations are executed in single instruction cycle.

The results in Table 1 and Table 2 show that compared to the traditional methods, our

algorithms have extremely low computational complexity on the encoder side. It is nearly 256

times faster than EBMA, 18 times faster than Gradient descent and nearly 8 times faster than

13



Table 1: Number of instructions per pixel in encoder.

Operations Pixel-based Block-based EBMA
per pixel MaxMI MaxMI Search

Additions 4 4 (2R + 1)2

Subtractions 5 5 (2R + 1)2

Exponentials 0 0 0
Multiplication 4 4 0
Division 0 0 0

Conditionals 4 4
B2 (2R + 1)2

Total 17 13+ 4
B2 3(2R + 1)2

Table 1. Continued

Operations Block-Based 3-Step Search
per pixel Gradient Descent Search
Additions B2 + (R − 2)(2B − 1) 8(log2(R/2) + 1) + 1
Subtractions B2 + (R − 2)(2B − 1) 8(log2(R/2) + 1) + 1
Exponentials 0 0
Multiplication 0 0
Division 0 0
Conditionals B2 + (R − 2)(2B − 1) 8(log2(R/2) + 1) + 1
Total 3(B2 + (R − 2)(2B − 1)) 3(8(log2(R/2) + 1) + 1)

Table 2: Number of instructions per pixel for R = 16 and B = 3 in encoder.

Method Number of Operations in Encoder
Pixel-based MaxMI 17
Block-based MaxMI 13+4

9

EBMA search 4356
Block-based Gradient Descent 316
Three Step Search 132
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the 3-step search (TSS). The block-based MaxMI algorithm and the pixel-based algorithm

have almost the same complexity. Due to this characteristic, the algorithms have great

potential for the application where devices on the encoder side is of limited computational

capability, for example, wireless video sensors, and mobile handsets.

Table 3 summarizes and compares the decoding complexity of our schemes and the tra-

ditional methods.

Table 3: Number of instructions per pixel in decoder.

Operations PMaxMI BMaxMI EBMA Block-Based 3-Step
per pixel Gradient Descent Search
Additions 4 4 2 2 2
Subtractions 5 5 0 0 0
Exponentials 0 0 0 0 0
Multiplication 4 4 0 0 0
Division 0 0 0 0 0
Conditionals 4 4

B2 0 0 0
Total 17 13.4 2 2 2

A snapshot of Table 3 is provided in Table 4 for illustration for the case when R = 16

and B = 3, assuming all the above operations are executed in single instruction cycle.

Table 4: Number of instructions per pixel for R = 16 and B = 3 in decoder.

Method Number of Operations in Decoder
Pixel-based MaxMI 17
Block-based MaxMI 13 + 4

9

EBMA search 2
Block-based Gradient Descent 2
Three Step Search 2

The results in Table 3 and Table 4 show that our algorithms also have moderately higher

computation complexity on the decoder side, about 8.5 times more complexity than other

schemes which have only 2 operations per pixel. Because in our motion estimation sys-

tem, the encoder and the decoder have the same configuration, and they carried out the

same computation process, therefore decoder does not require a separate hardware for the

decoder. Due to this reason, it is of the same complexity as its corresponding encoder. How-

ever, considering the application scenario, the devices on the decoder side (i.e., sink nodes
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in the wireless sensor network or base stations in the ordinary wireless network), generally

possesses higher computation capability and more power resource. The increased computa-

tion complexity compared to the traditional schemes will not pose a serious burden on the

system.

4 Simulation

In this section, we implement our adaptive motion estimation algorithms based on the max-

imum mutual information criterion as described in Section 3.1 and Section 3.2. We choose

the luminance component of several video sequences in QCIF format for the encoding pro-

cess. For EBMA, a block size of 8 × 8 is chosen with integer-pel accuracy. The search

range is 16 × 16 pixels. The block-based gradient descent search algorithm is implemented

as described in [6] with a block size of 3 × 3 and a search range of 16 × 16 pixels with

integer-pel accuracy. For the three-step algorithm [7], we use a block size of 8 × 8 and a

search range of 16 × 16 pixels with integer-pel accuracy. The mean absolute error (MAE)

distortion function is used as the block distortion measure for the two algorithms. Since we

focus on the study of motion estimation, hence DCT, quantization and entropy coding are

excluded in the simulation.

In each algorithm, motion is estimated and compensated using perfectly reconstructed

reference frames. The first frame is intra-coded and the rest are inter-coded. The experi-

ment is conducted using frame rates of 10, 5 and 2, respectively. The values of root mean

squared error (RMSE) for the four different QCIF sequences are shown in Tables 5, 6, and

7. Note that the mutual-information-based coding algorithm does not necessarily minimize

the RMSE, since the optimality criterion for determining the motion vectors is maximum

mutual information. Therefore, it is natural that the least-squares based competing methods

result in smaller RMSE error levels.

For low bit rate applications, the typical frame rate is usually 10 frames/sec or lower.

As frame rate decreases, the temporal correlation between two consecutive video frames

decreases. The more the skip rate, the smaller is the probability of finding the true motion

vector. From Tables 5, 6, and 7, we notice that there is a 3 dB difference in Y-PSNR

values between our algorithm and the three-step search. However, our scheme saves the

bit budget for motion vectors, which usually constitutes about 50% of the total budget for
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Table 5: Root mean square error for four test video sequences at 10 fps.

Method Miss Coastguard Suzie Foreman
America

EBMA search 2.88 9.29 4.92 8.16
3-Step search 4.06 12.14 9.57 16.24

Block-based Gradient Descent 6.78 14.27 16.28 23.69
Pixel-based MaxMI 6.29 20.36 11.49 20.52
Block-based MaxMI 6.37 22.13 13.28 20.42

Table 6: Root mean square error for four test video sequences at 5 fps.

Method Miss Coastguard Suzie Foreman
America

EBMA search 3.16 11.18 6.35 11.00
3-Step search 5.28 11.94 12.93 21.96

Block-based Gradient Descent 8.51 18.03 19.32 28.55
Pixel-based MaxMI 8.89 23.25 18.28 29.24
Block-based MaxMI 8.99 23.71 20.08 29.48

Table 7: Root mean square error for four test video sequences at 2 fps.

Method Miss Coastguard Suzie Foreman
America

EBMA search 3.63 14.29 8.69 17.91
3-Step search 9.71 23.39 17.99 31.92

Block-based Gradient Descent 12.40 22.18 24.10 37.76
Pixel-based MaxMI 12.06 29.52 25.32 39.39
Block-based MaxMI 17.42 29.78 21.12 37.26
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low bit-rate video applications. Therefore, the 3 dB performance loss can be compensated

by the bandwidth savings due to not transmitting motion vectors in our scheme and the

adaptive motion estimation provides a trade-off between computational complexity and video

presentation quality.

5 Conclusion

In this paper, we consider the motion estimation problem in video encoding. Existing motion

estimation techniques do not effectively utilize the past knowledge in motion prediction,

leading to inefficiency in computation. To address this problem, we proposed adaptive

model-based motion estimation algorithms using mutual information. In our schemes, the

motion vectors of the current frame are iteratively computed from the previous frame, based

on a model. This leads to computational savings because of the knowledge gained in the

computation of the previous motion vectors. Our results showed that our scheme significantly

reduces the computational complexity, as compared to the existing algorithms.

The salient feature of our adaptive motion estimation algorithm is its very low computa-

tional complexity. Hence, our algorithm is ideally suited for wireless video sensor networks,

in which computational complexity and energy consumption impose major constraints.
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