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Abstract. In this paper, we discuss some equivalences between two recently introduced statistical learning

schemes, namely Mercer kernel methods and information theoretic methods. We show that Parzen window-

based estimators for some information theoretic cost functions are also cost functions in a corresponding Mercer

kernel space. The Mercer kernel is directly related to the Parzen window. Furthermore, we analyze a

classification rule based on an information theoretic criterion, and show that this corresponds to a linear

classifier in the kernel space. By introducing a weighted Parzen window density estimator, we also formulate the

support vector machine in this information theoretic perspective.
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1. Introduction

During the last decade, research on Mercer kernel-

based learning algorithms has flourished [1–4].

These algorithms include for example the support

vector machine (SVM) [5–9], kernel principal

component analysis (KPCA) [10] and kernel Fisher

discriminant analysis (KFDA) [11, 12]. The common

property of these methods is that they are linear in

nature, as they are being explicitly expressed in

terms of inner-products. However, they may be

applied to non-linear problems using the so-called

Bkernel-trick.^ The kernel trick refers to the tech-

nique of computing inner-products in a potentially

infinite-dimensional kernel feature space, using so-

called Mercer kernels. Mercer kernel-based methods

have been applied successfully in several applica-

tions, e.g., pattern and object recognition [13], time

series prediction [14] and DNA and protein analysis

[15], to name a few.

The Mercer kernel-based methods rely on the

assumption that the data becomes easier to handle

after the transformation to the Mercer kernel feature

space. In the case of the SVM, the assumption is that

the data classes become linearly separable, and

therefore a separating hyperplane can be created. In

practice, one cannot know for certain that this

assumption holds. In fact, one has to hope that the

user chooses a kernel which turns out to properly

separate the data.



Independent of the research on Mercer kernel-

based learning algorithms another very powerful

machine learning scheme has emerged. This is

coined information theoretic learning [16, 17]. In

information theoretic learning, the starting point is a

data set that globally conveys information about a

real-world event. The goal is to capture the informa-

tion in the parameters of a learning machine, using

some information theoretic performance criterion. A

typical setup for information theoretic learning is

shown in Fig. 1. The system output is given by

yi ¼ gðWÞxi, where xi is the data pattern presented

to the system at iteration i. The function gðWÞ
represents a possibly non-linear data transformation,

which depends on a parameter matrix W. At each

iteration, the criterion is evaluated and a correction

term ei generated, which is fed back to the system to

guide the adjustment of the system parameters. The

system may receive external input in the form of a

desired response, in which case the system operates

in a supervised learning mode.

The mean squared error criterion (MSE) has

traditionally been the workhorse of adaptive systems

training [18]. However, the great advantage of

information theoretic criteria is that they are able to

capture higher order statistical information in the

data, as opposed to the MSE, which is a second order

statistical criterion. This property is important, since

recently many machine learning problems have been

encountered where the MSE criterion is insufficient.

Such problems include blind source separation and

independent component analysis, blind equalization

and deconvolution, subspace projections, dimension-

ality reduction, feature extraction, classification and

clustering.

Information theoretic criteria are expressed as

integrals over functions of probability densities.

One possible approach to evaluate such criteria for

an observed data set is to replace the densities by

density estimators. Using parametric density estima-

tors may be problematic, because they often require

numerical integration procedures to be developed.

Parzen windowing [19–23] has been proposed as an

appropriate density estimation technique, since this

method makes no parametric assumptions. Viola et al.

[24] proposed to approximate Shannon-based meas-

ures using sample means, integrated with Parzen

windowing [25]. Principe et al. [16] went a step

further, by introducing a series of information

theoretic quantities which can be estimated without

the sample mean approximation [17, 26]. This is

important, since the sample mean approximation

may not hold very well for small sample sizes. The

proposed measures were all based on the general-

izations of the Shannon entropy derived by Renyi

[27, 28], and include Renyi_s quadratic entropy, the

Cauchy–Schwarz (CS) pdf divergence measure, and

the integrated squared error divergence measure.

These will be discussed in more detail in Section 4.

Since these measures all include quantities which are

expressed as integrals over products and squares of

densities, we will refer to them as quadratic

information measures. Information theoretic learning

based on the quadratic information measures, com-

bined with Parzen windowing, has been applied with

great success on several supervised and unsupervised

learning problems [17, 29–36].

Information theoretic methods have the advantage

over Mercer kernel-based methods that they are easier

to interpret. Also, the information theoretic measures

can be estimated using Parzen windowing. Parzen

windowing is a well established density estimation

technique, which has been studied since the 1960s.

The strengths and weaknesses of the method are well

understood. Moreover, techniques for determining a

proper data-driven size for the Parzen window have

been thoroughly studied [19–23].
In this paper, we will show some equivalences

between these two learning schemes, which until now

has been treated separately. Specifically, we show that

Parzen window-based estimators for the quadratic

information measures have a dual interpretation as

Mercer kernel-based measures, where they are
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Figure 1. Information theoretic learning setup.
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expressed as functions of mean values in the Mercer

kernel feature space. The Mercer kernel and the Parzen

window are shown to be equivalent. This means that if

the Parzen window size can be reliably determined,

then the corresponding Mercer kernel size is simulta-

neously determined by the same procedure.

Furthermore, we analyze a classification rule

based on the integrated squared error measure, and

show that this corresponds to a linear classifier in the

kernel feature space. The SVM is also a linear

classifier in the kernel space. By introducing weighted
Parzen window estimators, we show that the SVM

can be related to the integrated squared error

measure, hence pointing out an equivalence between

this information theoretic approach and the SVM.

This paper is organized as follows. In Section 2,

we review the idea behind Mercer kernel-based

learning theory. In Section 3, we give a brief review

of the SVM. We discuss the Parzen window-based

estimators for the quadratic information measures in

Section 4, and show the relationship to Mercer

kernel feature space quantities. The information

theoretic classification rule is analyzed in Section 5.

Thereafter, we derive the connection between this

classifier and the SVM in Section 6. We make our

concluding remarks in Section 7.

2. Mercer Kernel-Based Learning Theory

Mercer kernel-based learning algorithms make use of

the following idea: via a non-linear mapping

F : Rd ! F
x! FðxÞ

ð1Þ

the data x1; . . . ; xN 2 Rd is mapped into a potentially

much higher dimensional feature space F . For a

given learning problem one now considers the same

learning problem in F instead of in Rd, working with

Fðx1Þ; . . . ;FðxNÞ 2 F .

The learning algorithm itself is typically linear in

nature, and can be expressed solely in terms of inner-

product evaluations. This makes it possible to apply

the algorithm in feature space without actually

carrying out the data mapping. The key ingredient

is a highly effective trick for computing inner

products in the feature space using kernel functions.

One therefore implicitly executes the linear algo-

rithm in kernel feature space. This property is

advantageous since execution of the learning algo-

rithm in a very high dimensional space is avoided.

Because of the non-linear data mapping, the linear

operation in kernel feature space corresponds to a

non-linear operation in the input space.

Consider a symmetric kernel function kðx; yÞ. If

k : C � C ! R is a continuous kernel of a positive

integral operator in a Hilbert space L2ðCÞ on a

compact set C 2 Rd, i.e.,

8 2 L2ðCÞ :

Z
C

kðx; yÞ ðxÞ ðyÞdxdy � 0: ð2Þ

Then there exists a space F and a mapping

F : Rd ! F , such that by Mercer_s theorem [37]

kðx; yÞ ¼ FðxÞ;FðyÞh i ¼
XNF
i¼1

�i�iðxÞ�iðyÞ; ð3Þ

where �; �h i denotes an inner product, the �i_s are the

eigenfunctions of the kernel and NF � 1 [6, 14].

This operation is known as the Bkernel-trick,^ and it

implicitly computes an inner-product in the kernel

feature space via kðx; yÞ.
Indeed, it has been pointed out that the kernel trick

can be used to develop non-linear generalizations to

any algorithm that can be cast in terms of inner-

products [4, 10]. For example, KPCA, KFDA and

kernel K-means [10, 38, 39] are simply extensions of

the corresponding linear algorithms by applying the

kernel-trick on every inner-product evaluation.

A kernel which satisfies Eq. (2) is known as a

Mercer kernel. The most widely used Mercer kernel

is the radial-basis-function (RBF)

kðx; yÞ ¼ exp � jjx� yjj2

2�2

( )
; ð4Þ

where � is a scale parameter which controls the width

of the RBF. A RBF kernel corresponds to an infinite-

dimensional Mercer kernel feature space, since the

RBF has an infinite number of eigenfunctions.

3. The Support Vector Machine

The support vector machine is the most prominent

Mercer kernel-based learning algorithm. It is a hyper-

plane classifier which is based on two crucial oper-
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ations: (1) The kernel-trick, which makes the otherwise

linear SVM algorithm non-linear. (2) The maximiza-

tion of the hyperplane margin, which is a regularizing
condition on the hyperplane solution. Basically, it

limits the admissible separating hyperplanes to the

one maximizing the margin. This regularization has a

positive effect on the generalization capability of the

classifier [6].

In the following, we give a brief review of the

SVM theory. We formulate the problem directly in

the Mercer kernel feature space. This Mercer kernel

feature space is induced by some kernel function,

which hopefully makes the feature space data

linearly separable such that it can be separated by a

hyperplane. Whether or not the data in fact is

linearly separable, heavily depends on the user

choosing a proper kernel.

Let !1 and !2 denote two data classes. We are

given a training set consisting of fxig; i ¼ 1; . . . ;N1,

from !1, and fxjg; j ¼ 1; . . . ;N2, from !2. The task

is to train a SVM classifier, such that it creates a

maximum margin linear classifier in the kernel

feature space. After training, the classification rule

in feature space is

x0 ! !1 : w*TFðx0Þ þ b* � 0; ð5Þ

otherwise, x0 ! !2. Here, x0 is a new, previously

unseen data point. Presumably, it has either been

generated by the process generating the !1 data, or

the process generating the !2 data.

Regularizing by maximizing the margin in feature

space corresponds to minimizing the squared norm of

the (canonical) separating hyperplane weight vector,

that is jjw*jj2, given the constraints

w*TFðxiÞ þ b* � þ1; 8xi 2 !1

w*TFðxjÞ þ b* � �1; 8xj 2 !2:
ð6Þ

This is a constrained optimization problem, which

is dealt with by introducing Lagrange multipliers

�i � 0, �j � 0, corresponding to the two classes, and

a primal Lagrangian

LP ¼
1

2
jjw*jj2 �

XN1

i¼1

�i½w*TFðxiÞ þ b*� 1�

þ
XN2

j¼1

�j½w*TFðxjÞ þ b*þ 1�: ð7Þ

The Lagrangian LP has to be minimized with respect

to the primal variables w* and b*, and maximized

with respect to the dual variables �i; �j. Hence a

saddle point must be found. At the saddle point, the

derivatives of LP with respect to the primal variables

must vanish,

@

@b*
LP ¼ 0;

@

@w*
LP ¼ 0; ð8Þ

which leads to

XN1

i¼1

�i ¼
XN2

j¼1

�j ¼ W; ð9Þ

and

w* ¼ m1*�m2*; ð10Þ

where

m1
* ¼

XN1

i¼1

�iFðxiÞ; m2
* ¼

XN2

j¼1

�jFðxjÞ: ð11Þ

By substituting these constraints into Eq. (7), the

dual Lagrangian

LD ¼ 2W� 1

2

( XN1;N1

i;i 0 ¼1

�i�i
0kðxi; xi

0 Þ

� 2
XN1;N2

i; j¼1

�i�jkðxi; xjÞ þ
XN2;N2

j; j 0¼1

�j�j
0kðxj; xj

0 Þ
)
;

ð12Þ

is obtained, where kð�; �Þ denotes an inner product

between any two training data points in the Mercer

kernel feature space. LD must be maximized with

respect to the Lagrange multipliers. It can be seen that

the solution vector w* has an expansion in terms of

the training patterns weighted by the Lagrange multi-

pliers. The Karush–Kuhn–Tucker (KKT) conditions

�i½w*TFðxiÞ þ b*� 1� ¼ 0; 8i ¼ 1; . . . ;N1;

�j½w*TFðxjÞ þ b*þ 1� ¼ 0; 8j ¼ 1; . . . ;N2;

ð13Þ

specify the non-zero Lagrange multipliers to be those

training patterns which are situated on the margin in
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feature space. Hence, w* is a weighted combination

of the patterns on the margin.

Let us determine the expression for b* in the SVM

theory. For those b* corresponding to support vectors

belonging to !1, we have b1
* ¼ 1� w*TFðxiÞ, where

FðxiÞ is a support vector. By adding all b1
* values

corresponding to !1, we have (remember that only

those �i_s corresponding to support vectors deviate

from zero)

XN1

i¼1

�ib*
1
¼
XN1

i¼1

�i � w*
T XN1

i¼1

�iFðxiÞ

Wb*
1
¼ W� w*Tm1

*

b*
1
¼ 1� 1

W
jjm1

*jj2 þ 1

W
m1

*T
m2

*:

ð14Þ

Similarly, for those b*corresponding to support vectors

belonging to !2, we have b2
* ¼ �1� w*TFðxjÞ.

Again, by adding all b2
* corresponding to !2, we obtain

XN2

j¼1

�jb2* ¼ �
XN2

j¼1

�j � w*T
XN2

j¼1

�jFðxjÞ

Wb2* ¼ �W� w*Tm2*

b2* ¼ �1� 1

W
m1*

T
m2*þ

1

W
jjm2*jj2:

ð15Þ

Since b1* ¼ b2*, we have b* ¼ 1
2
½b1*þ b2*�, such that

b* ¼ 1

2W
½jjm2*jj2 � jjm1*jj2�: ð16Þ

4. Quadratic Information Measures

and Parzen Windowing

In this section, we will review the quadratic

information measures, and show how they may be

estimated non-parametrically using the Parzen win-

dow technique for density estimation. For details on

how these cost functions may be used in adaptive

systems training, we refer to [16, 17]. We will also

show how each of these measures can be expressed

in terms of mean values in a Mercer kernel feature

space.

4.1. Parzen Window Density Estimator

Parzen windowing is a well-known kernel-based

density estimation method [19, 40]. Given a set of

iid samples fx1; . . . ; xNg drawn from the true density

f ðxÞ, the Parzen window estimator for this distribu-

tion is defined as

^

f ðxÞ ¼ 1

N

XN

t¼1

W�2ðx; xtÞ: ð17Þ

Here, W�2 is the Parzen window, or kernel, and �2

controls the width of the kernel. The Parzen window

must integrate to one, and is typically chosen to be a

pdf itself, such as the Gaussian kernel. Hence,

W�2ðx; xtÞ ¼
1

ð2��2Þ
d
2

exp � jjx� xtjj2

2�2

( )
:

We will use the Gaussian kernel in the derivations that

follows, but show in the Appendix that other choices

may be used. Note also that the width of the Parzen

window affects the density estimate much more than

the actual form of the window function [22, 23].

It is easily shown that Eq. (17) is an asymptoti-

cally unbiased and consistent estimator, provided �
decays to zero at a certain rate as N tends to infinity

[19]. In the finite sample case, the window width is

usually chosen such that it minimizes the mean

integrated squared error (MISE) between
^

f ðxÞ and

the target density f ðxÞ. It is easily shown that the

MISE consists of a bias part and a variance part.

Unfortunately, the bias part is minimized by mini-

mizing the window width, while the variance is

minimized by maximizing the window width. This is

the inherent bias-variance trade-off associated with

the Parzen window technique.

Finding a window width, or kernel size, which

provides a good bias-variance trade-off has been

thoroughly studied in the statistics literature [21–23].

Especially for data sets of low to moderate dimen-

sionality, many reliable methods exist, such as for

example least-squares cross-validation [23]. Another

straight-forward and popular approach is to find the

kernel size which minimizes the asymptotic MISE

(AMISE). By assuming that the underlying density is

Gaussian, this kernel size is given by

�AMISE ¼ �X
4

ð2d þ 1ÞN

� � 1
dþ4

; ð18Þ
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where �2
X ¼ d�1

P
i SXii

, and SXii
are the diagonal

elements of the sample covariance matrix [21]. The

main appeal of this approach is that is very easy to

use. The obvious drawback is that it assumes that the

underlying density is unimodal and Gaussian. Many

other methods exist, each having specific properties.

For high-dimensional data sets, the Parzen window

technique for density estimation is known to have

severe limitations. The reason is that the usual bias-

variance trade-off cannot be accomplished very well

in higher dimensions without very large samples [21,

22]. This is known as the Bcurse-of-dimensionality.^
Note however that this limitation may not apply

directly when the Parzen window technique is used in

clustering or classification, as discussed by Friedman

[41]. He showed that in those applications, low

variance is much more important than low bias,

hence favoring a large kernel size.

4.2. Renyi Quadratic Entropy

The Renyi quadratic entropy associated with the pdf

f ðxÞ is given by [27, 28]

HR2
ðf Þ ¼ � log

Z
f 2ðxÞdx: ð19Þ

We have available a sample from f ðxÞ, namely

fxtg; t ¼ 1; . . . ;N. Based on the sample, we esti-

mate f ðxÞ by
^

f ðxÞ, the Parzen window estimator.

We obtain an estimate for the Renyi entropy using

the plug-in a density estimator principle, by replac-

ing f ðxÞ by
^

f ðxÞ. However, since the logarithm is a

monotonic function, we will focus on the quantity

Vðf Þ ¼
R ^

f 2ðxÞdx, thus given by1

Vðf Þ ¼
Z

1

N

XN

t¼1

W�2ðx; xtÞ
1

N

XN

t0¼1

W�2ðx; xt0 Þdx

¼ 1

N2

XN;N
t;t0¼1

Z
W�2ðx; xtÞW�2ðx; xt0 Þdx:

ð20Þ

Now a property of Gaussian functions is employed.

By the convolution theorem for Gaussians, we have

Z
W�2ðx; xtÞW�2ðx; xt0 Þdx ¼ W2�2ðxt; xt0 Þ; ð21Þ

that is, the convolution of two Gaussians is a new

Gaussian function having twice the (co)variance.

Thus, we have

Vðf Þ ¼ 1

N2

XN;N
t;t0¼1

W2�2ðxt; xt0 Þ: ð22Þ

It can be seen that this estimation procedure involves

no approximations, besides the pdf estimator itself.

Eq. (22) was named the information potential [16],

because of an analogy to a potential energy field.

The key point in the following discussion is to

note that W2�2ðxt; xt0 Þ, for any xt; xt0 , is a Gaussian

kernel function, and hence it is also a kernel function
that satisfies Mercer_s theorem. Thus

W2�2ðxt; xt0 Þ ¼ kðxt; xt0 Þ ¼ FðxtÞ;Fðxt0 Þ
� �

: ð23Þ

Hence, the Parzen window-based estimator for the

information potential can be expressed in terms of

inner products in a Mercer kernel space. In the

following we make this connection explicit. We

rewrite Eq. (20) as follows

Vðf Þ ¼ 1

N2

XN;N
t;t0 ¼1

FðxtÞ;Fðxt0 Þ
� �

¼ 1

N

XN

t¼1

FðxtÞ;
1

N

XN

t0¼1

Fðxt0 Þ
* +

¼ mTm

¼ jjmjj2;

ð24Þ

where m is the mean vector of the F-transformed

data

m ¼ 1

N

XN

t¼1

FðxtÞ: ð25Þ

That is, it turns out that the information potential

may be expressed as the squared norm of the mean
vector of the data in a Mercer kernel feature space.

This connection was previously pointed out by [42]

in a study relating orthogonal series density estima-

tion to kernel principal component analysis.
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4.3. Integrated Squared Error as a PDF
Divergence

In order to measure the Bdistance^ or divergence

between two probability densities, pðxÞ and qðxÞ, an

integrated squared error (ISE) criterion may be used

ISEðp; qÞ ¼
Z

pðxÞ � qðxÞ½ �2dx

¼
Z

p2ðxÞdx� 2

Z
pðxÞqðxÞdx

þ
Z

q2ðxÞdx: ð26Þ

It can be seen that the integrated squared error

criterion is always non-negative, it is symmetric and

it vanishes if and only if the two pdfs are identical.

Such a measure is well-known in density estimation

[43]. It has also been used for discrete distributions

[44]. In [16], this measure was used primarily for

computational simplicity.

We have available a sample from pðxÞ, namely

fxig; i ¼ 1; . . . ;N1, and a corresponding sample

from qðxÞ, that is, fxjg; j ¼ 1; . . . ;N2.2 We estimate

the two pdfs by the Parzen window method

^
pðxÞ ¼ 1

N1

XN1

i¼1

W�2ðx; xiÞ; ^
qðxÞ ¼ 1

N 2

XN2

j¼1

W �2ðx; xjÞ:

ð27Þ

These estimators are now used to estimate the ISE
divergence. Note that we have for simplicity as-

sumed that the same kernel size � is appropriate for

both estimators. This may not be the case in practice.

The latter situation may easily be incorporated in the

subsequent analysis. Now, performing a similar

calculation as above, the ISE can be estimated non-

parametrically as follows

dISEISEðp; qÞ ¼ 1

N2
1

XN1;N1

i;i0¼1

W2�2ðxi; xi0 Þ �
2

N1N2

�
XN1;N2

i; j¼1

W2�2ðxi; xjÞ þ
1

N2
2

�
XN2;N2

j; j0 ¼1

W2�2ðxj; xj0 Þ:

In analogy to Eq. (22), the dISEISE may also be

expressed in terms of mean vectors in the Mercer

kernel feature space. When we perform a similar

calculation, we obtain

dISEISEðp; qÞ ¼ jjm1jj2 � 2mT
1 m2 þ jjm2jj2

¼ jjm1 �m2jj2; ð28Þ

where m1 is the kernel feature space mean vector of

the data points drawn from pðxÞ, and m2 is the kernel

feature space mean vector of the data points drawn

from qðxÞ. That is

m1 ¼
1

N1

XN1

i¼1

FðxiÞ m1 ¼
1

N2

XN2

j¼1

FðxjÞ: ð29Þ

Hence, the ISE divergence measure can also be seen

to have a geometric interpretation in the kernel

feature space. It measures the square of the norm of

the difference vector between the two means m1 and

m2.

4.4. Cauchy–Schwarz PDF Divergence

Based on the Cauchy–Schwarz inequality, [16] also

used the following divergence measure between the

pdfs pðxÞ and qðxÞ

DCSðp; qÞ ¼ � log

R
pðxÞqðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

p2ðxÞdx
R

q2ðxÞdx
p ; ð30Þ

which we refer to as the Cauchy–Schwarz pdf diver-

gence. It is also always non-negative, it is symmetric

and it vanishes if and only if the two densities are equal.

Since the logarithm is monotonic, we will focus on

the quantity in the argument of the log in Eq. (30).

The Parzen window-based estimator for this quantity

was named the information cut (IC) in [45], because

it was shown to be closely related to the graph

theoretic cut. By a similar calculation as above, the

IC can be expressed as

ICðp; qÞ ¼
1

N1N2

PN1;N2

i; j¼1

W2�2ðxi; xjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2
1

PN1;N1

i;i0 ¼1

W2�2ðxi; xi0 Þ 1
N2

2

PN2;N2

j; j 0 ¼1

W2�2ðxj; xj0 Þ
s

:

ð31Þ
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Also, the information cut may be expressed in terms

of mean vectors in the Mercer kernel feature space, as

IC ¼ mT
1 m2

jjm1jjjjm2jj
¼ cos ffðm1;m2Þ; ð32Þ

Hence, it turns out that the information cut has a dual

interpretation as a measure of the cosine of the angle

between cluster mean vectors in the Mercer kernel

feature space.

5. ISE-based Classification

In this section we will analyze a classification rule

based on the ISE, which can be interpreted both in

the input space and in the Mercer kernel space. In the

next section, we will relate the SVM to such a

classifier, hence providing another equivalence be-

tween kernel methods and information theoretic

methods.

We have available the training data points

fxig; i ¼ 1; . . . ;N1, drawn from pðxÞ, and a corres-

ponding sample from qðxÞ, that is, fxjg; j ¼ 1; . . . ;N2.

Based on this training data set we wish to construct a

classifier, which assigns a test data point x0 to one of

the classes !1 or !2. Now, we define

^
p
0 ðxÞ ¼ 1

N1 þ 1

XN1

i¼0

W�2ðx; xiÞ;

^
q
0 ðxÞ ¼ 1

N2 þ 1

XN2

j¼0

W�2ðx; xjÞ:

ð33Þ

Hence,
^
p
0 ðxÞ is the Parzen estimator for pðxÞ,

assuming x0 is included in the !1 data set. Likewise,
^
q
0 ðxÞ is the Parzen estimator for qðxÞ, assuming x0 is

included in the !2 data set.

The proposed ISE-based strategy is to classify x0

according to the following rule:

x0 ! !1 :

Z
½ ^
p
0 ðxÞ � ^

qðxÞ�2dx

�
Z
½ ^
pðxÞ � ^

q
0 ðxÞ�2dx; ð34Þ

otherwise, assign x0 to !2. In words; assign x0 to the

class which, when having x0 appended to it, makes the

estimated divergence between the classes the greatest.

We will now analyze this simple classification rule

in terms of the Mercer kernel feature space. Let

m
0

i; i ¼ 1; 2 be the Mercer kernel feature space mean

vector of class !i, assuming Fðx0Þ is assigned to that

class. It is easily shown that

m
0

1 ¼
N1

N1 þ 1
m1 þ

1

N1 þ 1
Fðx0Þ

m
0

2 ¼
N2

N2 þ 1
m2 þ

1

N2 þ 1
Fðx0Þ:

ð35Þ

In the kernel feature space, the equivalent classifica-

tion rule of Eq. (34) may be expressed as

x0 ! !1 : jjm0

1 �m2jj2 � jjm1 �m
0

2jj
2: ð36Þ

In what follows, we look at a special case. Assume
that Pð!1Þ ¼ Pð!2Þ, that is the prior probabilities for
the classes are equal. Let Pð!1Þ ¼ N1

N and Pð!2Þ ¼
N2

N , which means that we assume that N1 ¼ N2 In that

case, we have

m
0

1 ¼ �1m1 þ �2Fðx0Þ
m
0

2 ¼ �1m2 þ �2Fðx0Þ;
ð37Þ

where �1 ¼ N1

N1þ1
¼ N2

N2þ1
, and �2 ¼ 1

N1þ1
¼ 1

N2þ1
.

For ease of notation, let Fðx0Þ ¼ y. The left-hand

side of Eq. (36), becomes

jjm0

1 �m2jj2 ¼ m
0T
1 m

0

1 � 2m
0T
1 m2 þmT

2 m2

¼ �2
1jjm1jj2 þ 2�1�2mT

1 yþ �2
2jjyjj

2

� 2�1mT
1 m2 � 2�2mT

2 yþ jjm2jj2:

Similarly, the right-hand side of Eq. (36) becomes

jjm1 �m
0

2jj
2 ¼ mT

1 m1 � 2mT
1 m

0

2 þm
0T
2 m2

¼ jjm1jj2 � 2�1mT
2 m1 � 2�2mT

1 y

þ �2
1jjm2jj2 þ 2�1�2mT

2 yþ �2
2jjyjj

2:

Using these results, the classification rule becomes

x0 ! !1 : jjm0

1 �m2jj2 � jjm1 �m
0

2jj
2

, mT
1 y�mT

2 y� �2
1 � 1

2�2½�1 þ 1�
jjm2jj2 � jm1jj2
h i

� 0

, mT
1 y�mT

2 yþ b � 0:

ð38Þ
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where b ¼ 1
2
jjm2jj2 � jjm1jj2
h i

, and the constant
�2

1
�1

�2½�1þ1� ¼ �1.

In fact, the above classification rule has a simple

geometrical interpretation. The point y is assigned to
the class whose mean it is closest, and the class
boundary in kernel feature space is a hyperplane
given by a vector w. Let w ¼ m1 �m2, and let the

midpoint between m1 and m2 be given by

v ¼ 1
2
ðm1 þm2Þ. Now the class of y is determined

by examining whether the vector ðy� vÞ encloses an

angle smaller than �
2

with the vector w or not. If it

does, y is closest to m1, and y is assigned to !1.

Hence,

x0 ! !1 : wTðy� vÞ � 0

, wTyþ b � 0

, mT
1 y�mT

2 yþ b � 0;

ð39Þ

Figure 2 geometrically illustrates this simple classi-

fication rule, which we have derived using the ISE

criterion as a starting point.

As explained above, in the Mercer kernel space,

the value of the inner-product between the class

mean values and the new data point determines

which class it is assigned to. The threshold value, b,

depends on the squared Euclidean norms of the mean

values, which according to Eq. (24) are equivalent to

the class information potentials, and hence the class

entropies.

We now complete the circle, and analyze the

Mercer kernel feature space classification rule in

terms of Parzen estimators in the input space. Note

that

mT
1 y ¼ mT

1 Fðx0Þ ¼
1

N1

XN1

i¼1

FTðxiÞFðx0Þ

¼ 1

N1

XN1

i¼1

W�2ðx0; xiÞ ¼ bpðx0Þ: ð40Þ

Likewise

mT
2 y ¼ mT

2 Fðx0Þ ¼
1

N2

XN2

j¼1

FTðxjÞFðx0Þ

¼ 1

N2

XN2

j¼1

W�2ðx0; xjÞ ¼ ^
qðx0Þ: ð41Þ

The classification rule hence becomes

x0 ! !1 :
^
pðx0Þ � ^

qðx0Þ þ b � 0: ð42Þ

We remark that this classification rule depends both

on the estimated densities at x0, and on the informa-

tion potentials of the two classes. We have already

shown that these information potentials are equivalent

to Renyi_s quadratic entropies for the classes.

In the case that the classes have the same value for

the information potential (entropy), which means

that the kernel feature space mean values have equal

length from the origin, we have b ¼ 0, and the

current classification rule reduces to the well-known

Bayes classification rule (for equal priors), where the

class probability densities are estimated using Parzen

windowing.

The same direct connection cannot be obtained

based on the Cauchy–Schwarz divergence.

6. ISE-Based Classification and the SVM

In the previous section, we analyzed an information

theoretic classification rule, which turned out to have

a dual interpretation as a hyperplane classifier in a

Mercer kernel feature space. We will now relate this

classifier to the SVM, by introducing weighted

m

m

w1

2

v
y-v

y

Figure 2. ISE-based geometric classification rule: Assign the

point y to the class whose mean it is closest to. This can be done

by looking at the inner-product between ðy� vÞ and w. It changes

sign as the enclosed angle passes through �
2

. The corresponding

decision boundary is given by a hyperplane orthogonal to w

(dashed line).
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Parzen window estimators. The following discussion

therefore provides an information theoretic perspec-

tive to the SVM.

The ISE classifier is entirely determined by the

mean vectors m1 and m2 of the training data, since

both w and b are determined by these vectors. We

are therefore totally dependent on these mean vectors

to truly represent the structure of the data. For

example, the presence of outliers in the training set

may affect the computation of w and b in such a way

that the performance of the classifier is degraded. A

possible approach to make the procedure more

robust may be to allow the contribution of each

training data point to the mean vectors to be

weighted differently.

Let us therefore introduce the weighting components

�i � 0 associated with !1, and �j � 0 associated with

!2. The weighted mean vectors then become

m1 ¼
1

W1

XN1

i¼1

�iFðxiÞ; m2 ¼
1

W2

XN2

j¼1

�jFðxjÞ:

ð43Þ

By introducing such weighted mean vectors, we also

need to introduce some criterion to determine proper

weights. Such a criterion should be optimal with

respect to classifier performance. The performance of

a classifier is measured by its success rate on test data.

Hence, the classifier should generalize well. In

statistical learning theory, it has been shown that

minimization of the squared norm of the hyperplane

weight vector, while satisfying the classification

constraints on the training data, improves generaliza-

tion performance.

Based on the arguments above, we may relate the

vector w ¼ m1 �m2 to the SVM weight vector

w* ¼ m1
*�m2

*. Recall that the SVM is exactly

based on regularization by minimization of jjw*jj2.

The minimization is accompanied by the classifica-

tion constraints, which ensures that the training data

is classified correctly. These constraints say

w*TFðxiÞ þ b* � þ1; 8xi 2 !1

w*TFðxjÞ þ b* � �1; 8xj 2 !2:
ð44Þ

In fact, if W1 and W2 were equal, then w and w*

would only differ by a constant.

Let us take a closer look at the information po-

tentials associated with the weighted mean vectors.

We have

jjm1jj2 ¼
1

W2
1

XN1;N1

i;i0¼1

�i�i0 kðxi; xi0 Þ ¼
Z

^
p 2ðxÞdx: ð45Þ

Thus, the weighted mean vector m1 is associated with

^pðxÞ ¼ 1

W1

XN1

i¼1

�iW�2ðx; xiÞ; ð46Þ

a weighted Parzen window estimator in the input

space. We likewise have

^
qðxÞ ¼ 1

W2

XN2

j¼1

�jW�2ðx; xjÞ: ð47Þ

The kernels which constitute these Parzen window

estimators are no longer equally important. Recall

that the ISE classification rule based on the density

estimators is

x0 ! !1 :
^pðx0Þ � ^qðx0Þ þ b � 0; ð48Þ

with b ¼ 1
2
jjm2jj2 � jjm1jj2
h i

. In order to derive this

classification rule using the traditional Parzen win-

dow estimators, we assumed that N1 ¼ N2. Using the

weighted Parzen window estimators instead, it is

easily found that the corresponding assumption

becomes W1 ¼ W2 ¼ W (see Eq. (37) and the related

discussion in Section 5). Therefore,

m1 ¼
1

W
m1*; m2 ¼

1

W
m2*; ð49Þ

and consequently

w ¼ 1

W
w*: ð50Þ

Now, using the weighted Parzen window estima-

tors we may express the SVM optimization problem

in an information theoretic framework as follows

min
�i; �j

jjw*jj2 ¼ min
�i; �j

W2jjwjj2 ¼ min
�i; �j

W2jjm1 �m2jj2:

ð51Þ
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Since jjm1 �m2jj2 is the Mercer kernel feature

space equivalent to the ISE pdf divergence, we have

min
�i; �j

W2jjm1 �m2jj2 ¼ min
�i; �j

W2

Z
½ ^
pðxÞ � ^

qðxÞ�2dx:

ð52Þ

The optimization is subject to classification con-

straints, expressed as

1Þ w*TFðxiÞ þ b* � 1

, WwTFðxiÞ þWb � 1

, wTFðxiÞ þ b � 1

W

, ^pðxiÞ � ^qðxiÞ þ b � 1

W
;

ð53Þ

for i ¼ 1; . . . ;N1.

2Þ w*TFðxjÞ þ b* � �1

, WwTFðxjÞ þWb � �1

, wTFðxjÞ þ b � � 1

W

, ^pðxjÞ � ^qðxjÞ þ b � � 1

W
;

ð54Þ

for j ¼ 1; . . . ;N2.

Likewise, the SVM classification rule, using the

weighted Parzen window estimators, becomes

x0 ! !1 : w*TFðx0Þ þ b* � 0

, WwTFðx0Þ þWb � 0

, wTFðx0Þ þ b � 0

, ^
pðx0Þ � ^

qðx0Þ þ b � 0:

ð55Þ

The weighted Parzen window estimators
^
pðxÞ and

^
qðxÞ, as defined above, are bona fide density estima-

tors. That is, they are always non-negative and

integrate to one. However, since the weights are

determined by minimizing the ISE pdf divergence,

which puts emphasis on the points close to the class

boundary trying to maximize the overlap between the

class pdfs, we do not regard them as proper estimators

for the pdfs that generated the data. From SVM

theory, we know that in the Mercer kernel feature

space, the only non-zero weighting components are

those which correspond to data patterns on the margin.

In the input space, it seems that the corresponding non-

zero weighting components will be associated with data

patterns near the class boundary. We therefore interpret

the minimization of the ISE pdf divergence as a

sparseness criterion, which tunes the classifier to those

patterns which are near the boundary. The other data

patterns should be much easier to classify correctly, and

are not given any weight in the design of the classifier.

The performance of the classifier is secured by the

classification constraints. Note that weighted Parzen

window estimators have been previously proposed for

improved Parzen window-based Bayes classification

[46].

In summary, we have found that one may view the

SVM theory in feature space in terms of weighted

Parzen density estimation in the input space, where

regularization is obtained by minimizing the integrat-

ed squared error criterion. Hence, in an information

theoretic framework, the support vector machine is

formulated by introducing the weights �i � 0;
�j � 0, and estimating the class densities according to

^
pðxÞ ¼ 1

W

XN1

i¼1

�iW�2ðx; xiÞ;

^
qðxÞ ¼ 1

W

XN2

j¼1

�jW�2ðx; xjÞ:

ð56Þ

The weights, and hence
^
pðxÞ and

^
qðxÞ, are learned by

enforcing a regularization criterion

min
�i; �j

W2

Z
½ ^

pðxÞ � ^
qðxÞ�2dx; ð57Þ

subject to the classification constraints,

^
pðxiÞ � ^

qðxiÞ þ b � þ 1

W
; 8xi 2 !1;

^
pðxjÞ � ^

qðxjÞ þ b � � 1

W
; 8xj 2 !2:

ð58Þ

In terms of the weighted Parzen window estimators,

the classification rule then becomes x0 ! !1 :
^
pðx0Þ � ^

qðx0Þ þ b � 0:

The SVM may therefore be interpreted as an

enhanced, more complex, version of the ISE-based

classification rule analyzed in Section 5.
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6.1. Experimental Illustration

A simple artificial data set is constructed, in order to

illustrate that the SVM, which is based on regular-

ization using weighted Parzen window estimators,

seems indeed to be more robust to outliers than the

ISE classifier, which is based on traditional Parzen

window estimators.

Figure 3a shows a training data set, with the

known class labels indicated. It consists of two half-

moon shaped classes, which are non-linearly separa-

ble. A test data set, drawn from the same distributions

as the training data set, is available. The task is to

correctly classify the test data set. The MISE rule, Eq.

(18), is employed to determine a proper Parzen

window size, hence determining the Mercer kernel

size also. The resulting kernel size is � ¼ 0:7. Using

this kernel size, an ISE-based classification is

performed. The result is shown in Fig. 3b. By visual

inspection, the result seems reasonable. A SVM is

also trained using the same kernel size. In this case,

the SVM classification and the ISE classification are

identical.

Next, a few data points are added to the training

data set. These data points may be considered

outliers. The resulting data set is shown in Fig. 4a,

with the known class labels indicated. The ISE-based

classification is shown in Fig. 4b. The outliers turn

out not to be assigned to the correct class. This may

be a result of the fact that all data points are

weighted equally in the computation of the Mercer

kernel space mean vectors. On the other hand, the

SVM obtains the result shown in Fig. 4c. This result

reflects the structure of the training data to a higher

degree. The improved performance in this case may

be attributed to the weighting property of the SVM.

We have also conducted experiments on real data

sets, which are not shown here. These experiments

indicate that in many cases the ISE-based classification

may perform quite well, but that in some cases the

SVM regularization has a positive impact on the

classifier performance. Since the purpose of this paper

is to establish theoretical equivalences between Mercer

kernel methods and information theoretic methods, we

will not try to further analyze the classification

improvements that the SVM regularization has over

the simpler, but closely related, ISE-classifier.

7. Conclusions

We have shown that Parzen window-based estimators

for the quadratic information measures are equivalent

to Mercer kernel feature space measures, which can

be expressed as functions of mean values in the

Mercer kernel feature space. The Mercer kernel and

the Parzen window are shown to be equivalent. This

implies that Parzen window size selection procedures

known from statistics can potentially be incorporated

into Mercer kernel-based methods in order to

determine a proper data-driven Mercer kernel size.
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(a) Training data
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(b) Test data classified

Figure 3. Classification of simple artificially created data set using both the ISE classifier and the SVM.
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This also means that the problems associated with

applying the Parzen window technique on high

dimensional data sets may also be problematic for

some Mercer kernel-based methods. Note that these

equivalences cannot be obtained using Parzen win-

dow-based estimators for the Shannon measures.

We have analyzed a classification rule based on

the ISE measure, combined with Parzen windowing.

The resulting classifier was shown to have a dual

interpretation as a hyperplane classifier in a Mercer

kernel feature space. By introducing weighted

Parzen window estimators, we formulated the SVM

classifier as a closely related enhancement of the ISE

classifier. Thus, the ISE-classification rule is to some

extent equivalent to the SVM classifier.

In our information theoretic framework, the SVM

weights, which are related to weighted Parzen win-

dow density estimators, are determined by minimiz-

ing the ISE between the class densities. In future

work, perhaps some other criteria could be used to

learn proper weights. Preferably, such alternative

methods should be easier to implement than the

SVM optimization. In particular, we will investigate

whether the Cauchy–Schwarz pdf divergence mea-

sure could be more advantageous in some respect than

the integrated squared error criterion for this purpose.
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(a) Training data
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(c) SVM classification

Figure 4. Classification of data set with outliers using both the ISE classifier and the SVM.
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Appendix: Using Non-Gaussian Mercer Kernels

In this Appendix, we will examine Parzen window-

based estimator of
R

pðxÞqðxÞdx, using non-Gaussian

Mercer kernels.

First, note thatZ
pðxÞqðxÞdx ¼ EpfqðxÞg; ð59Þ

where Epf�g denotes expectation with respect to the

density pðxÞ.
The expectation operator may be approximated

based on the available samples, as follows

EpfqðxÞg 	
1

N1

XN1

i¼1

qðxiÞ: ð60Þ

Assume now that

^
qðxÞ ¼ 1

N2

XN2

j¼1

kðx; xjÞ; ð61Þ

where kðx; xjÞ is a non-Gaussian Mercer/Parzen

kernel. Eq. (59) can now be approximated by

Z
pðxÞqðxÞdx 	 1

N1

XN1

i¼1

^
qðxiÞ

¼ 1

N1

XN1

i¼1

1

N2

XN2

j¼1

kðxi; xjÞ

¼ 1

N1N2

XN1;N2

i;j¼1

kðxi; xjÞ:

ð62Þ

Hence, the same result is obtained as in the case

where Gaussian Parzen kernels were used. However,

in this case, it required an additional approximation

with regard to the expectation operator. Of course,

the same reasoning can be used to approximate the

quantities
R

p2ðxÞdx and
R

q2ðxÞdx.

Notes

1.

PN;N

t;t0 ¼1 equals the double summation
PN

t¼1

PN
t0¼1.

2. In the following, the index i always points to data

drawn from pðxÞ, j always points to data drawn

from qðxÞ, and t always points to data drawn from

f ðxÞ.
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