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Feature Extraction Using
Information-Theoretic Learning
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Abstract—A classification system typically consists of both a feature extractor (preprocessor) and a classifier. These two components
can be trained either independently or simultaneously. The former option has an implementation advantage since the extractor need only
be trained once for use with any classifier, whereas the latter has an advantage since it can be used to minimize classification error
directly. Certain criteria, such as Minimum Classification Error, are better suited for simultaneous training, whereas other criteria, such as
Mutual Information, are amenable for training the feature extractor either independently or simultaneously. Herein, an information-
theoretic criterion is introduced and is evaluated for training the extractor independently of the classifier. The proposed method uses
nonparametric estimation of Renyi’s entropy to train the extractor by maximizing an approximation of the mutual information between the
class labels and the output of the feature extractor. The evaluations show that the proposed method, even though it uses independent
training, performs at least as well as three feature extraction methods that train the extractor and classifier simultaneously.

Index Terms—Feature extraction, information theory, classification, nonparametric statistics.

1 INTRODUCTION

FEATURE extraction can be used as a preprocessor for
applications including visualization, classification, detec-
tion, and verification. Herein, feature extraction is investi-
gated as it applies to classification. Classification consists of
associating each incoming exemplar, having N; features,
with one of N¢ class labels. It is a supervised process, which
implies that a set of N7 exemplars are available for which the
true class labels are known. The designer of a classification
system does not usually know a priori which features will
yield acceptable classification performance and, in theory, the
classification performance is a nondecreasing function of the
number of features. Hence, the designer might choose to use
all available features. However, using a large number of
features can be wasteful of both computational and memory
resources. In addition, due to practical problems associated
with training a classifier with a finite amount of data, using a
large number of features can actually cause degradation of
classification performance [1]. Reduction of the number of
input features can be done by linear or nonlinear transforma-
tions. The use of a linear transformation to reduce the number
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of features is known as (linear) feature extraction or subspace
projection. A constrained linear transformation can also be
used. The selection of a subset of the input features is a
common method of constraining the linear transformation.

Fig. 1 shows a block diagram of a generic classification
system. In this figure, s;(n), z;(n), and y;(n) are the size
(N7 x 1) input features, (Np x 1) output features, and the
(N x 1) outputs of the classifier for the nth exemplar and
having class j (j =1,2,..., N¢), respectively. Each of these
variables represents a vector the elements of which are
denoted using two subscripts, e.g., s;;(n) is the ith element
of the input feature vector for the nth exemplar and having
class j. A single subscript is used when referring to the
vector having a particular class label, whereas no subscript
is used to denote the corresponding vector when the class
label is unknown. The maximum (MAX) operator selects
the single output of the N¢ classifier outputs that has the
largest value, the index of which provides the estimate of
the class label. Likewise, ¢(n) and e(n) denote, respectively,
the (true) class label and the error for the nth exemplar
(other aspects of Fig. 1 are described below). Only linear
transformations are considered herein. In this case, the
feature extraction is performed using a (No x Nj)
matrix R, where z;(n) = Rs;(n).

The feature extractor and the classifier shown in Fig. 1 can
be trained simultaneously or independently. Simultaneous
training is used in several recent approaches (listed below),
which involve the minimization of criteria that resemble the
misclassification rate and are expected to outperform
methods that train the extractor and classifier independently.
Herein, we introduce an information-theoretic method that
trains the extractor in an independent fashion, we show that
it performs better than several simultaneously-trained
systems on five randomly chosen data sets, and we explain
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Fig. 1. Block diagram of a generic classification system.

why simultaneously-trained systems do not necessarily
outperform independently-trained systems.

2 INFORMATION-THEORETIC FEATURE EXTRACTION

Methods that use second-order statistics compare the linear
relationship between random variables, whereas informa-
tion-theoretic methods compare the nonlinear relationships
between random variables, i.e., between a vector of features
and the class label. A possible criterion for the latter
approach is mutual information (MI), which may be
described as the amount of information the random output
feature vector, X, carries about the class, C' (where
realizations of X and C are given by z(n) and c(n),
respectively). Mutual information is defined by [2],

I(X;C) = H(X) - H(X]C), (1)

where H(X) is Shannon’s (differential) entropy [2]. Upper
and lower bounds on the Bayes error rate exist that are
minimized by maximizing MI [3], [4], [5]. However, M1 is not
in common use since the estimation of Shannon’s entropy is
computationally intensive [6] (estimation of Shannon’s
entropy can be accomplished by discretizing the variables
[6], [71, [8], [9], [10] or by using an O(N2) nonparametric
estimator [11]).

2.1 Proposed Method, MRMI-SIG

The proposed method replaces the two (Shannon) entropy
terms in (1) with entropy terms introduced by Renyi [12].
This substitution produces the following estimate of MI,

I(X;0) = Hy(X) — Hy(X]0), (2)

where Hy(X) is Renyi’s quadratic entropy [13]. This
substitution is chosen since there exists a nonparametric
estimate of Renyi’s quadratic entropy that reduces the
computational complexity from O(NZ) to O(Ny). This
entropy estimator is given by [14], [15],

) = —log— ZG

which is based on Parzen windows [16] and where N is the
number of exemplars and G(z,0%I) is a Gaussian kernel
evaluated at z and having a diagonal, isotropic covariance
matrix.

Hy(X ) —z(n —1),20°1), (3)

,-Né (?}' - '?@)2 —

Both classifiers considered herein are invariant under an
invertible, linear transformation. This invariance allows a
reduction in the number of free parameters that must be
adapted without unnecessarily restricting the possible set of
decision surfaces that can be produced by a (linear)
projection. The reduction is performed by constraining the
feature extraction matrix, R, to be a pure rotation matrix.
Hence, R can be expressed as a function of a vector of
rotation angles, 0, as follows:

zj(n) = R(0)s;(n), (4)
No Ny

|:H H Rz m zm :| ) (5)
i=1 m=Np+1 No

where the notation [A] corresponds to keeping only the first
No rows of matrix A, 0;,, is a single element of the rotation
angle vector, and R; ;,,(6;,,) is an individual Given’s rotation
matrix [17]. Constraining the transformation in this manner
reduces the number of parameters from NoN; to
No(N; — Np). For the classifiers used here, rotations between
retained output features have no effect on classification nor
do rotations between rejected outputs. Only rotations
between a feature that is retained and a feature that is rejected
have an effect on classification. Therefore, only these rotation
angles are trained, as indicated by the limits in (5). The
proposed method can also be used with unconstrained linear
or nonlinear transformations, the choice of which is dictated
by the classifier (e.g., itis, in general, overly restrictive to use a
linear feature extractor with a classifier that can only generate
linear decision surfaces).

The combination of (2) and (3) results in the proposed
information-theoretic criterion for feature extraction. This
criterion, known as MRMI-SIG, is given by,

logN ZG
+Z( ’lg

where z;(n) = R(0)s;(n), 0 is the (No(N; — Np)z1) vector
of rotation angles adapted to maximize J, N; is the number
of class labels in the training set having class j, and Nr is the
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length of the training set. The parameters are updated using
gradient ascent optimization,

0(n+1) = 0(n) + 1V, (7)

wherenis the step size and the subscript on J is used to denote
that the order in which the data are presented is shuffled
every iteration, the need for which is explained next.

2.2 Discussion of MRMI-SIG

The second term on the right-hand side of (6) is maximized
by minimizing (z;(n) — z;(n — 1))?, which is accomplished
by choosing R such that all the consecutive exemplars from
a given class are as near as possible to each other in the
space of the output features. This equates to minimizing the
within-class spread in the limit as long as the data order is
shuffled during adaptation. A trivial solution for minimiz-
ing the total within-class spread is to set R equal to an all-
zeros matrix. This, however, causes the features from all
classes to overlap perfectly. The first term on the right-hand
side of (6) prevents this undesirable solution since it is
maximized by maximizing (z(n)— z(k))?, which is a
measure of the spread of the data (in the space of the
output features) irrespective of the class. There are other
ways to construct a criterion that attempts to minimize
within-class spread and maximize overall spread, e.g., LDA
[18] (which is based on second-order statistics). MRMI-SIG,
which has an information-theoretic interpretation, repre-
sents another possibility.

The proposed criterion is similar to one that was
previously used to minimize the mutual information between
a set of outputs for the application of blind source separation
(BSS) [19]. There are, however, several notable differences
between the formulation above and that used for BSS:

1. the criterion for feature extraction uses supervised
training as opposed to unsupervised training,

2. only Ny of the outputs of the rotation matrix are kept,

3. mutual information is measured between the output
feature set and the class label (instead of between the
outputs), and

4. the criterion is based on the entropies of multi-
dimensional random vectors.

Each of these items, as discussed next, has an important
implication on the performance of MRMI-SIG for feature
extraction.

For the BSS application, which involves unsupervised
training, the sign of each entropy term in the MRMI-SIG
criterion is determined by the shape of the probability
density function (pdf) of the associated output [11]. No such
sign change is necessary for feature extraction since it
involves supervised training. The knowledge of the true
class labels (from the training set) is sufficient to prevent/
resolve any sign ambiguities.

The requirement that only Ny rows of the rotation matrix
be kept for feature extraction impacts asymptotic analyses.
For BSS, it is possible to prove that all the elements of the
gradient expression for MRMI-SIG are zero at the separating
solution without requiring o to approach 0 (which is the first
step in proving that MRMI-SIG provides an unbiased and
consistent estimate of the rotation angles required for
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separation). This proof requires that all rows of the separation
matrix be kept and is, therefore, not applicable for feature
extraction. The only known proof that dictates when the
right-hand side of (2) produces the same solution as (1) is very
restrictive (it is limited to the two-class case and it requires
that the class covariance matrices are identical). We believe
that the proposed method is useful even when these
conditions are not met. Nevertheless, this highlights the first
of two possible drawbacks to using MRMI-SIG for the present
application. Namely, there is no general guarantee that
maximizing (2) using Renyi’s definition of entropy is
equivalent to maximizing (1) using Shannon’s definition.

The MI given by (1), on which MRMI-SIG is based, may
be written in one of three equivalent expressions,

H(X) - H(X|C),
H(C) - H(C|X), (8)
H(X)+ H(C)— H(X,C).

The second formulation is not convenient for the entropy
estimator of (3) since the given information, X, has a
continuous distribution, thus requiring integration. The
third form is used for BSS since the joint entropy can easily
be made to be invariant to the adaptation [19]; however, this
simplification does not apply when extracting features since
the MI is measured between the output feature set and the
class label. The entropy estimator of (3) has an associated
gain that is a function of the dimensionality of the
underlying random vector [20]. This gain is irrelevant for
the maximization or minimization of entropy in some cases
(e.g., when there is a single entropy term), but it plays an
important role when the criterion consists of a summation
of two or more entropies if the random vectors on which
they are based have different dimensionalities [20]. To
avoid this problem (the dimensionality-dependent gain), for
feature extraction, the first formulation of (8) is used since
the two entropy terms have an identical dimensionality of
No (the problem of dimensionality-dependent gain is
avoided in BSS by using the third formulation above with
the joint entropy term removed). This, however, brings up
the second of two possible drawbacks of using MRMI-SIG
for feature extraction. The fact that the entropy terms are
based on Np-dimensional random vectors implies that the
pdf estimation, which is required to prove the validity of
the entropy estimator, is subject to the curse of dimension-
ality. Notice, however, the dimensionality of the implicit
pdf estimation is not determined by the number of input
features, but by the (smaller) number of output features.

3 COMPARISONS

The performances of several different methods are com-
pared using the rate of correct classification of five different
data sets. The two Bayes classifiers that are used are the
Bayes-G and the Bayes-NP classifiers, both of which
generate nonlinear decision surfaces. The Bayes-G classifier
is a parametric classifier that assumes that the set of output
features, for each class j, has a multivariate Gaussian
distribution [21]. The Bayes-NP is a nonparametric classifier
that uses Parzen windows [16] to estimate each of the
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TABLE 1
Description of the Data Sets Used in the Comparison

Dataset N; N¢ Nr Test Size Outliers

Pima Indians 8 2 500 268 8.0%

Landsat Satellite Image (Statlog) 36 6 4435 2000 0%

Letter Recognition 16 26 16000 4000 0%

Musk 166 2 300 176 0%

Arrhythmia 279 16 300 152 0.3%

a posteriori distributions [22]. Unlike the Bayes-G classifier,
the Bayes-NP classifier makes no assumptions on the
distribution of the output features so that it is able to take
into account higher-order statistics of the output features,
including multiple-modality. All reported results for the
Bayes-NP classifier are based on using a kernel size of 0.25.

Results are shown for a total of six methods. Three of
these train the extractor and classifier independently,
namely, the proposed method (MRMI-SIG), Principal
Components Analysis (PCA) [18], and a method that is
based on maximizing quadratic mutual information (QMIE)
[23], [24], [25], [26], [27] (this last method bears some
similarity to MRMI-SIG in that both use Parzen windows
and both are a function of a squared pdf). The remaining
three methods train the feature extractor and the classifier
simultaneously. These methods include Minimum Classifi-
cation Error (MCE) [28], [29], [30], [31], [32], [33] (which is
related to a method by Nedeljkovic [34]), Mean Square
Error (MSE) [35], and a method that ranks features based on
classification performance of a validation set (FR-V) [35].
For the sake of perspective, the classification results of
random projections are also included for the lower-
dimensional data sets, the coefficients of which are chosen
uniformly in [—1,1]. The results of the random projection
are represented in the plots using a dashed line.

The MRMI-SIG, MCE, and MSE methods all have
computational complexity O(Ny) and QMIE has computa-
tional complexity O(N2), whereas the computational com-
plexity of FR-V depends only on the classifier and PCA has
an analytical solution. For the two high-dimensional data
sets, MRMI-SIG is used only to rank the input features so
that the comparison between MRMI-SIG and FR-V is
between two methods having similar computational com-
plexity. Feature ranking, which is suitable for data sets
having extremely high dimensionality, is used for demon-
strative purposes only. We expect that using PCA to reduce
the dimensionality to a manageable intermediate value or
using a multistage (semigreedy) approach will provide
better classification results than ranking.

MRMI-SIG uses a kernel size of o = 0.5, the value of
which is based on a theoretical analysis of nonparametric
entropy estimators (for unit-variance random vectors,
kernel sizes between 0.2 and 0.5 minimize the sensitivity
of the entropy estimator due to the kernel size [36]). The
MSE criterion uses the 1 of the Np scheme to define the
targets, 7,(n), which is defined as setting the target for the
nth exemplar associated with class j to 1 and the other
N¢ — 1 targets to O (this is represented in Fig. 1 using the
demultiplexer). MCE has two user-defined parameters, o

and v, which are set to 10 and 2, respectively. Local minima
of the MCE algorithm can, if performed properly, be
avoided by scheduling the value of the smoothing para-
meter, a. This can also be accomplished with the proposed
information-theoretic criterion by annealing the kernel size,
o [37]. In order to simplify the experimental procedure this
is not done for either MCE or MRMI-SIG. The FR-V method
uses a validation set that is found by randomly selecting a
(disjoint) subset of the original training set.

Table 1 shows the important characteristics of the five data
sets used herein. The first three were randomly selected from
the list of all data sets at the UCI Machine Learning
Repository, whereas the Musk and Arrhythmia data sets
were selected for their large input dimensionality (all data
sets may be found at http://www.ics.uci.edu/~mlearn/
MLRepository.html). For all methods except PCA it is
assumed (without loss of generality due to the properties
of the two classifiers used here) that the original features of
each data set have been shifted, rotated, and scaled so that
the resulting (N; x 1) input features, s(n), are zero-mean,
(spatially) uncorrelated, and have unit variance. Since the
transform for PCA depends on the eigenvalues of the
autocorrelation matrix, sphering should not be used with
PCA. The Pima data set has numerous invalid data points,
e.g., features that have a value of 0 even though a value of 0 is
not meaningful or physically possible. These correspond to
points in feature space that are statistically distant from the
mean calculated using the remaining data (with the points in
question removed). No attempt was made to remove or
correct for these outliers. Likewise, the Arrhythmia data set
has missing values, all of which are set to 0 for the
comparison.

The Bayes-G classifier produces the best classification
performance for the Pima, Landsat, and Musk data sets,
whereas the Bayes-NP classifier performs the best for the
Letter Recognition and Arrhythmia data sets. Therefore, the
results shown are restricted to these combinations of data
sets and classifiers. This choice has no effect on the relative
performance of the different feature extraction methods.
The training is performed using Nr randomly-selected
samples of the data set and is tested on the remaining
(disjoint) data. All results are reported using 10-fold cross
validation. The results for all algorithms are the same
whenever Ny = N;. This is because both classifiers are
invariant under full-rank linear transformations.

Figs. 2, 3, and 4 show the correct classification rates for
the Pima, Landsat, and Letter Recognition data. Each figure
includes error bars that represent one standard error.
Results are not shown for the Landsat data for Ny > 9 since
the performance of the methods becomes indistinguishable
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Fig. 2. Classification performance versus output dimension, Ny, for the
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Fig. 5. Classification performance versus output dimension, Ny, for the
Musk data.
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Fig. 6. Classification performance versus output dimension, Ny, for the
Arrhythmia data.

beyond this point. All five methods perform well on these
three data sets, with the exception that MSE has trouble
with the Pima data set and PCA performs poorly for the
Landsat data for small Np. The proposed method has the
best performance for the Pima and Letter Recognition data
sets and the second best for the Landsat data.

Figs.5and 6 show the results for the two high-dimensional
data sets, Musk and Arrhythmia. For these two plots, MRMI-
SIG is only used to rank the features. Results are shown for
both MRMI-SIG and FR-V and the inset in each figure shows
the corresponding error bars. In Fig. 5, the best performances
for MRMI-SIG and FR-V are similar. Notice, however, that
MRMI-SIG concentrates the group of features most useful for
classification into the top 20 percent of the highest-ranked
features. Hence, it requires roughly 25 fewer features to reach
the peak performance. The jaggedness of the curves for Ny >
120 corresponds to the point at which at least one of the class
covariance matrices used in the Bayes-G classifier becomes
ill-conditioned. The curves in Fig. 6 have a very different
characteristic due to the use of the Bayes-NP classifier on data
where roughly 1/4 of the 16 class labels are poorly
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Fig. 7. The left subplot shows all possible locations of input features for
an example two-class problem and the right subplot shows an example
realization of Ny = 4 data drawn from this distribution. Also shown are
the resulting decision boundaries of a linear classifier based on using
MRMI-SIG and MCE to extract a single feature.

represented (fewer than five instances each). Classification
results for both methods are flat and very nearly equal for the
portion of Ny not shown in the figure. As can be seen, the
performance of MRMI-SIG is better than or equal to the
performance of FR-V for all values of No.

4 DISCUSSION

Methods that simultaneously train the extractor and the
classifier place a stronger emphasis on the locations in
feature space that are near the decision boundary. This does
not occur for methods that train the extractor independently
of the classifier since the boundary is necessarily defined by
the classifier. Instead, they are based on the structure of the
overall data distribution and the within-class distributions.
Consequently, if a particular data set has few data near the
boundary (relative to the complexity of the optimum
discriminant function), then the generalization of the
methods that simultaneously train the extractor and
classifier may suffer relative to methods that train in an
independent fashion.

A trivial example of this is shown in Fig. 7. The left
subplot shows all 16 possible locations of the two-dimen-
sional features for a fictitious two-class data set. Both
MRMI-SIG and MCE are used to train a rotation matrix to
reduce the dimensionality to one. For the left subplot
(which pertains to infinite training), feature reduction using
either method amounts to selecting the first feature. The
resulting decision boundary produced by a linear classifier,
shown in the space of the input features, is included in the
figure. Notice that both produce perfect classification. On
the other hand, if only Ny =4 data are drawn from this
distribution, as shown in the right subplot, the resulting
decision boundaries for MRMI-SIG and MCE are noticeably
different. In this case, maximizing the margin for MCE
produces a decision boundary that yields a 33 percent
correct classification rate on the test data. MRMI-SIG still
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selects the first feature since doing so places all features of
each class in the exact same location in the space of the
output features (minimizing within-class spread) while
maintaining separation of the two classes. In fact, this same
solution is always produced by MRMI-SIG if the training set
includes at least two distinct samples from each class. If
MSE is used in a simultaneously-trained fashion, the results
are similar to that obtained using MCE. If MSE is used in an
independently-trained fashion and supposing the targets
were chosen correctly (7,(n) = [—1,0] and 7 = [1,0], where
7,(n) and 74(n) are the targets for class “o” and class “x” for
the nth exemplar, respectively), then the results are
identical to that obtained using MRMI-SIG (however, in
general, it is not possible to know good locations for the
targets in the output feature space). This example favors
methods that take into account the structure of the data, but
it is just as simple to construct an example that favors
methods that emphasize features near the boundary.

To the extent that the preceding argument holds for the
five data sets considered here, it could be argued that
MRMI-SIG performs well compared to the methods that
train the extractor and classifier simultaneously because the
Pima, Letter Recognition, Musk, and Arrhythmia data sets
have optimum decision boundaries that are not represented
sufficiently well by the (finite) training data, whereas the
optimum decision boundary for the Landsat data is
represented marginally well by the training data.

5 CONCLUSION

Interest in the distinction between training the extractor
simultaneously or independently from the classifier (also
known as the wrapper and filter approaches, respectively)
has heightened in recent years due to the paper by Biem et al.
[28] that introduced the MCE method. A second paper that
deals with this topic and is important for this discussion is a
paper by LeCun et al. [38], where it is argued that
discriminative methods, i.e., simultaneously-trained meth-
ods, are preferred. Nevertheless, the proposed feature
extraction method performs, on average, as well as or better
than MCE, MSE, and FR-V even though all three train the
extractor and classifier simultaneously and two of them (MCE
and FR-V) are optimized by minimizing classification error
directly. This is possible since the optimization is necessarily
performed on the finite training set, not on the disjoint finite
test set. In order to prove that any method minimizes the
probability of error, on the disjoint test set, “infinite training”
is required, as acknowledged by Watanabe et al. [29] and
Katagiri et al. [30]. This is essentially equivalent to knowing
the underlying distributions, which would allow any of a
number of methods to produce the optimum (Bayes) solution.

Much more theoretical work is required to validate the
mutual information approach for feature extraction in
classification. The fundamental difficulty is related to the
implicit link between mutual information and classification
error, where the only known results are expressed in the
form of upper and lower bounds on the Bayes classifica-
tion error. Perhaps a more productive approach with
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information-theoretic learning is to reverse the question of
tuning the classifier topology to the feature extractor and
seek classifiers that will meet the minimization of the
Bayes error with MI-derived features.
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