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Abstract
The field of brain–machine interfaces requires the estimation of a mapping from spike trains
collected in motor cortex areas to the hand kinematics of the behaving animal. This paper
presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters,
gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and
local linear switching models) applied to datasets from two experiments in monkeys
performing motor tasks (reaching for food and target hitting). Ensembles of 100–200 cortical
neurons were simultaneously recorded in these experiments, and even larger neuronal samples
are anticipated in the future. Due to the large size of the models (thousands of parameters), the
major issue studied was the generalization performance. Every parameter of the models (not
only the weights) was selected optimally using signal processing and machine learning
techniques. The models were also compared statistically with respect to the Wiener filter as
the baseline. Each of the optimization procedures produced improvements over that baseline
for either one of the two datasets or both.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The field of brain–machine interfaces (BMIs) has recently
reached prominence because of the success in producing
real-time estimations of movement parameters from neuronal
activity recorded in multiple cortical areas [1–5]. This
accomplishment has led to remarkable advances in decoding
for a wide range of BMIs. For example, Taylor et al have
measured how much information was conveyed throughout
the center-out target reaching movements [6]. In the study by
Carmena et al, multiple motor parameters could be estimated
simultaneously; hand position, velocity and gripping force

were estimated, yielding a neural prosthetic control of reaching
and grasping using a robotic arm [7]. Wu et al have applied
Bayesian generative models to infer motor parameters from
neuronal activity during the 2D target acquisition tasks, where
the temporal prior of motor parameters could be estimated
through the use of these models [8]. Gage et al have introduced
naı̈ve co-adaptive strategies for both the subjects and the
decoding filters (the Kalman filters in their works) for the
1D audio cursor control tasks without prior motor training
[9]. Musallam et al have demonstrated decoding of the
goals and expected value signals used to position computer
cursors through neuronal activity recorded from the parietal
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Figure 1. A system identification block diagram of BMIs. The
Wiener filter approximates the neural system from spike counts’
inputs and the desired 3D hand position, velocity and grasping force.

reach region [10]. It is noteworthy, however, that reasonably
accurate estimations of movement parameters were obtained
with relatively simple Wiener filters [3, 4, 7].

If one considers the complexity of the motor system,
starting from the intricate firing modulation of millions of
cells in the cortex, passing through the added complexity of
the spinal cord functionality up to the firing of motor neurons
that control muscles which also have nontrivial contractile
properties and are richly innervated with sensory endings, it
is rather surprising that a simple linear projection in the input
space is able to capture the parameters of arm movements
with correlation coefficients around 0.8 between the desired
and actual trajectories. The major factor contributing to the
success of linear models in these estimations is the fact that
the projection is done on a set of bases that are continuously
following the input signal (the past samples of the input), and
the linear manifold created in high-dimensional spaces very
likely will provide a good projection for the low-dimensional
output trajectory. However, the huge number of coefficients
to be trained is an issue that must be properly addressed. This
paper looks from an optimal signal processing framework at
the challenges and opportunities of linear models for BMIs
and evaluates the steps that are still needed to go beyond the
present level of performance.

Let us describe briefly the goals of BMIs to articulate
better the structure of this paper. In Nicolelis’ primate
laboratory at Duke University, hundreds of electrodes are
chronically implanted in frontal and parietal cortical areas
of owl [3] and macaque [7, 11] monkeys. At the same
time, the 3D position and velocity of the animal’s hand and,
in addition, hand gripping force are measured and sampled
at 10 Hz or higher. Therefore, the implementation of the
Wiener filter in order to learn the mapping of neuronal
activity to hand movement parameters matches the well-known
system identification block diagram of figure 1 [12]: the spike
trains are the input to the multiple input–multiple output
(MIMO) Wiener filter, and the desired response is the 3D
hand position, velocity and gripping force. The ultimate goal
is to substitute the use of the animal’s arm by a robotic device
controlled directly by the outputs of the trained Wiener filter.
The applications in clinical situations involving handicapped
individuals demand portability emphasizing signal processing
models that can be implemented in low-power (eventually
fixed point) digital signal processors.

Now that we have an idea of the goals and setup, let us
turn our attention to the challenges of the application. One

challenge is that the spatio-temporal spike trains’ data have
highly complex dynamics and therefore cannot be effectively
used to guide the model design. Another challenge is the
MIMO mapping problem with a large input dimensionality
(i.e., for a 100 neuronal input vector, the Wiener filter with
three outputs has 3000 free parameters). In addition, the
statistics vary both in time and in the space of the electrodes.
Some neuronal firings are not related to the task and constitute
therefore noise in the data. Finally, because the true mapping
of the sampled neuronal ensemble to movement parameters is
unknown, it is also unknown if linear model would describe it
the best.

The straight Wiener filter algorithm [12] is applied and
evaluated in two types of tasks: food reaching and target hitting
tasks. This algorithm which has already been proven to work
well in BMI tasks will be used as a golden standard for model
comparisons. Several modifications will be implemented to
evaluate the following issues: the nonstationarity assumption
is addressed with the normalized form of the least square
algorithm (NLMS) [12] that is known to reach the same
solution on average for stationary data, but may handle the
nonstationary nature of the data better with its time-varying
learning rate.

The issue of the number of free model parameters will
be handled by three different techniques. The first is the
subspace Wiener filter, which first projects the input data and
then derives a Wiener filter to the desired response. In the field
of signal processing, principal component analysis (PCA) has
been widely used as a major subspace projection method [13],
but it does not orient the projection to take advantage of the
desired response structure. As an alternative, we propose
a new idea of seeking subspace decomposition in the joint
space through a hybrid subspace method, which combines the
criterion of PCA and partial least squares (PLS) [14]. We also
implement a reduction in the number of degrees of freedom
of the model by using a generalized feedforward filter based
on the gamma tap delay line [15], which has the ability to
cover the same memory depth of the tap delay line with fewer
taps. The third method implemented uses online regularization
based on weight decay, which decreases the weight values of
unimportant weights through training.

The final issue covered in this paper relates to the adequacy
of the linear modeling. We design a nonlinear mixture of
switching, competitive linear models that implement a locally
linear but globally nonlinear model [16]. This structure can be
thought as a time-delay neural network (TDNN) [13] that is
trained in a different way to conquer the difficulty of training
thousands of parameters with relatively small datasets. In
order to place this class of models versus other alternatives, a
Kalman filter and the population vector algorithm will also be
compared in this paper.

2. Data collection

The performance of the models in BMI was evaluated in two
experimental setups. In the first, the firings of 104 cells were
collected by microwire arrays implanted in several cortical
areas—posterior parietal cortex (PP), left and right primary
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motor cortex (M1), and dorsal premotor cortex (PMd)—while
an owl monkey (Aotus trivirgatus) performed the reaching
task. In this task, the monkey was trained to reach for food
placed in a tray. This movement consisted of four phases:
reaching for food, grasping food, taking food to mouth and
returning to the resting position. Both 3D hand positions
and neural activity were recorded simultaneously during the
task [3].

In the second experiment, the firing times of 192 cells
were collected from three cortical areas, dorsal premotor
cortex (PMd), primary motor cortex (M1) and supplementary
motor area (SMA), while a Rhesus monkey performed the
target hitting task: the monkey was trained to move a cursor
controlled by a hand-held pole to hit a randomly located target
on the computer screen. If the monkey intersected the target,
a liquid reward was given.

A multichannel acquisition processor (MAP, Plexon,
Dallas, TX) cluster was used to collect electrical activity from
the implanted microwires. The spike was detected by time–
amplitude discriminators and sorted by an off-line analysis
based on a modified version of PCA [3, 11]. The accuracy
of spike sorting can greatly impact BMI modeling that occurs
at a later stage [17, 18]. Spike sorting is affected by both
the applied detection/discrimination technique and subjective
decisions of the neurophysiologists. To reduce the errors
in the spike sorting procedure, the data were checked for
artifacts and spikes that did not meet normal physiological
parameters [11]. Neuron firings were counted (binned) in non-
overlapping 100 ms time windows, and a 1 s time window was
selected as an appropriate memory depth to derive the best
linear projector [3]. The primate’s hand position, used as the
network desired signal, was also recorded (with a time-shared
clock) and digitized with 200 Hz sampling rate. The desired
hand position signal was then downsampled to 10 Hz to be
aligned synchronously with firing count data. The data were
collected by Dr Nicolelis’ group at Duke University, and in
this paper data from the sessions of one animal per experiment
were utilized. Further details about the data collection and
experiments can be found in [3, 7, 11].

3. BMI modeling using linear filters

Consider a set of spike counts of M neurons and a hand
position vector d ∈ �C (C is an output dimension, e.g. C = 2
or 3) for a given time instance (sampled at 10 Hz). The
spike count for each neuron is embedded by an L-tap time-
delay line. Then, the input vector for a given time instance
n, x(n) = [x1(n), x1(n − 1), . . . , x1(n − L + 1), x2(n), . . . ,

xM(n − L + 1)]T , has the length of L · M , where xi(n − l)

is the spike count of neuron i delayed by l samples. A linear
model estimating hand position at time instance n from the
embedded spike counts can be described as

yc(n) =
L−1∑
l=0

M∑
i=1

xi(n − l)wc
il + bc, (1)

where yc(n) is the model output for the c-coordinate (c can be
x, y or z), wc

il is a weight on xi(n − l) for the c-coordinate
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Figure 2. The topology of the linear filter designed for BMIs in the
case of the 3D reaching task. wc

il is a weight connecting xi(n − l)
and yc(n), and z−1 is a discrete delay operator.

output and bc is a bias for the c-coordinate output. In a matrix
form, we may rewrite (1) as

y(n) = WT x(n), (2)

where y(n) is a C-dimensional output vector. The dimension of
a weight matrix W is (L ·M) × C. Each column of W consists
of a vector,

[
wc

10w
c
11 · · ·wc

1L−1 · · ·wc
ML−1

]T
. Note that the bias

terms can be removed by zeroing the mean of the input and
output.

Figure 2 shows the topology of the linear model for the
BMI application, which will be kept basically unchanged
throughout these studies. The most significant differences will
be in the number of parameters and in the way the parameters
of the linear model will be estimated from the data.

In our study, all the models are applied to estimate the 3D
or 2D hand positions using M = 99 neurons for the reaching
task and M = 192 for the target hitting task. The number
of taps in the delay line, L, is 10 unless otherwise stated.
The size of the training and the testing set is 10 000 samples
(∼16.7 min) and 3000 samples (∼5 min), respectively. The
weights of the models are fixed after adaptation and the outputs
are produced for novel testing samples. The output trajectories
of the different models for the same segment of test data (the
x, y and z coordinates for the reaching task and the x and
y coordinates for the target hitting task) will be shown in
figures 9 and 10 for visual comparison purpose.

The following quantitative performance measures are
used to evaluate the accuracy of the estimation: correlation
coefficient (CC) quantifies the linear relationship between
estimated and actual hand trajectories defined as

CC ≡ Cdy

sdsy

, (3)

where Cdy denotes the covariance between estimated ( y) and
actual (d) hand trajectories, and sd (or sy) denotes the standard
deviation. The signal-to-error ratio (SER) is the ratio of the
powers of the actual hand trajectories and the errors, defined
as

SER ≡
∑K

k=1 |d(k)|2∑K
k=1 |e(k)|2 , (4)
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where d(k) and e(k) are the actual hand signal and the error
at time instance k and K is the size of the window in which
SER is measured. The SER and CC are computed over short-
time sliding windows (the size of windows is determined by
the duration of the movement). We measure the performance
of all models as the empirical distribution of CC and the SER
evaluations: mean and standard deviation of CC (and the SER)
over test data are quantified to describe the distribution.
Further, we divide evaluation results for food reaching into
two modes: movement and rest. Then the average of CC
and the SER over three coordinates for each mode are used
to estimate the empirical distribution. For target hitting, the
distribution is estimated separately for each coordinate. The
evaluations of these performance measures for every model
we design in this paper will be summarized in tables 1
and 2.

3.1. Wiener filter

The transfer function from the neural spike counts to the hand
position can be estimated by linear adaptive filters, among
which the Wiener filter plays a central role [12]. The weights
of the Wiener filter for the MIMO system are estimated by the
Wiener–Hopf solution as

WWiener = R−1P. (5)

R is the correlation matrix of neural spike inputs with the
dimension of (L · M) × (L · M),

R =




r11 r12 · · · r1M

r21 r22 · · · r2M

...
...

. . .
...

rM1 rM2 · · · rMM


 , (6)

where rij is an L × L cross-correlation matrix between
different neurons i and j, and rii is an L × L autocorrelation
matrix of neuron i. P is a cross-correlation matrix between
each neuron and hand positions,

P =




p11 · · · p1C

p21 · · · p2C

...
. . .

...

pM1 · · · pMC


 , (7)

where pic is a cross-correlation vector between neuron i and
c-coordinate of hand positions. It is straightforward to see
that rT

ji = rij , which leads to a symmetric R. Therefore, the
Cholesky factorization can be used to invert R to reduce the
computational complexity [19].

Note that R must be a nonsingular matrix to obtain the
solution from (5). However, if the condition number of R
is very large, then WWiener may be inadequately determined.
In that case, we can reduce the condition number by adding
an identity matrix multiplied by some constant to R before
inversion. This procedure is the well-known ridge regression
in statistics [20]. The details will be discussed in section 4.3.

3.2. Normalized LMS adaptation

The underlying assumption of the Wiener filter is that statistics
of the data are time invariant. However, in the nonstationary
environment where statistics of the data vary over time, the
Wiener filter uses only the average statistics to determine
weights.

The normalized least mean squares (NLMS) algorithm, a
modified version of the least mean squares (LMS) algorithm,
can train weights effectively for nonstationary inputs by
varying the learning rate [12]. It utilizes an estimation of the
input power to adjust the learning rate at each time instance.
The update rule of the NLMS for the weight vector connecting
the c-coordinate of hand position, at time instance n, is
given by

wc
NLMS(n + 1) = wc

NLMS(n) +
η

γ + ‖x(n)‖2
ec(n)x(n), (8)

where η satisfies 0 < η < 2, γ is a small positive constant and
ec(n) is the error for the c-coordinate. Although the weights in
the NLMS asymptotically converge in a statistical sense to the
Wiener filter for stationary data, the solution can be different
for nonstationary data. In our analysis, the weights of the
linear filter are trained by NLMS with the settings of η = 0.01
and γ = 1.

4. Performance enhancement using regularization

4.1. Spatial regularization by subspace projection

One of the challenges in the BMI application is that some
neurons’ firings are not substantially modulated during task
performance and they only add noise to the multichannel
data. In addition, some neurons’ firings are correlated, and
it may be advantageous to blend their inputs to improve model
performance. Subspace projection, which can reduce noise
and blend together correlated input signals, also reduces the
number of degrees of freedom in the multichannel data, and
consequently decreases the variance of the fitted model. In
this section, we introduce the hybrid subspace projection
method which is derived by combining criteria of principal
component analysis (PCA) and partial least squares (PLS).
Then we will design the subspace Wiener filters based on the
hybrid subspace projection.

PCA, which preserves maximum variance in the projected
data, has been widely adopted as a projection method [13]. The
projection vector is determined by maximizing the variance of
the projection outputs as

wPCA = arg max
w

J PCA(w) = E[‖xw‖2] = wT Rsw. (9)

where Rs is the input multichannel correlation matrix but now
computed over space only. The columns of the PCA projection
matrix are eigenvectors of Rs corresponding to the largest
eigenvalues. However, PCA does not exploit information
in the joint space of both input and desired signals. This
means that there may be directions with large variance that are
not important to describe the desired response (for example,
neuronal modulations related to the monkey’s anticipation of
reward; they might be substantial, but useless for estimation
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Figure 3. An overall diagram of the subspace Wiener filter. M is the number of input neurons and S is the subspace dimension, where
S < M. y(n) is the estimated hand position vector for given spike count input and desired output vectors, {x(n), d(n)}.

of movement parameters), but will be preserved by the PCA
decomposition. One of the subspace projection methods to
construct the subspace in the joint space is the PLS, which
seeks the projection maximizing the cross-correlation between
the projection outputs and desired signals [14]. Given an input
matrix X and a desired response vector d, a projection vector
of PLS, wPLS, maximizes the following criterion:

wPLS = arg maxw J PLS(w)

= E[(Xw)T d] = E[wT XT d] = wT p,
(10)

where p is defined as a cross-correlation vector between X
and d. The consecutive orthogonal PLS projection vectors
are computed using the deflation method [13]. Also, the
continuum regression (CR), introduced by Stone and Brooks
[21], blends the ordinary least square, PCA and PLS, and
provides a projection matrix that maximizes a weighted
average of both variance and cross-correlation. Recently,
we have proposed a hybrid criterion function similar to CR,
together with a sample by sample learning algorithm to
estimate the projection matrix that maximizes the criterion
[22]. The learned projection can be either PCA, PLS or an
arbitrary combination of them. The hybrid criterion function
combining PCA and PLS is given by

J (w, λ) = (wT p)2λ(wT Rsw)1−λ

wT w
. (11)

By taking the logarithm, the criterion can be rewritten as

log(Ĵ (w, λ)) = λ log(wT p)2

+ (1 − λ) log(wT Rsw) − log(wT w). (12)

We seek to maximize this criterion for 0 � λ � 1. There
are two learning algorithms derived in [22] to find w, but
we use the fixed-point algorithm in this paper due to its
fast convergence and independence of learning rate. The
estimation of w at the (k + 1)th iteration with the fixed-point
algorithm is given by

w(k + 1) = (1 − T )w(k) + T

[
λp

w(k)T p
+

(1 − λ)Rsw(k)

w(k)T Rsw(k)

]

(13)

with a random initial vector w(0), where T (0 < T < 1) is a
balancing parameter to remove the oscillating behavior near
convergence. The convergence rate is affected by T, which
produces a tradeoff between the convergence speed and the
accuracy. We obtain the fastest convergence for T ≈ 1. The

consecutive projection vectors are also learned by the deflation
method, forming the projection matrix W. After projection
onto the subspace by W, we embed each channel with L-tap
(L = 10 here) delays and design the Wiener filter to estimate
the hand positions. Figure 3 illustrates an overall diagram of
the subspace Wiener filter.

The hold-out cross-validation method [23] is utilized to
determine both the optimal subspace dimension (S) and λ.
10 000 samples are divided into 9000 training samples and
1000 validation samples to estimate the generalization error,
for both the food reaching and target hitting tasks. The
MSE for the validation set at each set of (Si, λj), where Si ∈
{20, 21, . . . , 60} and λj ∈ {0, 0.1, . . . , 1}, is computed to find
the optimal set at which the MSE is minimized. In figure 4, the
contour map of the MSE for the validation set is depicted. The
minimum MSE is found at (37, 0.9) for the food reaching task
and (44, 0.6) for the target hitting task. The MSE also tends
to be smaller for larger λ in the lower subspace dimensions
while the MSE levels are rather flat in the higher subspace
dimensions. This indicates that PLS plays a more important
role in building a better subspace Wiener filter for smaller
subspace dimensions.

4.2. Parsimonious modeling in time using the gamma filter

The large number of parameters in the linear model is caused
not only by the number of neurons but also by the number of
tap delays required to capture the history of the neuron firings
over time. A generalized feedforward filter with the gamma
tap delay line can reduce the number of taps by blending
features of finite impulse response (FIR) and infinite impulse
response (IIR) filters [15]. It has been shown that a generalized
feedforward filter can provide trivial stability conditions and
easy adaptation while decoupling the memory depth from the
filter order [15]. Figure 5 illustrates the architecture of the
generalized feedforward filter, where an input signal is delayed
through each tap by an operator defined by a specific transfer
function G(z). Note that when G(z) = z−1, it becomes an
FIR filter. The gamma filter is a special case of the generalized
feedforward filter with G(z) = µ/(z − (1 − µ)), where µ is a
feedback parameter. In this case, the signal from the kth tap is
determined by the following difference equation:

xk(n) = (1 − µ)xk(n − 1) + µxk−1(n − 1), (14)

where x(n) is a given input signal at time instance n.
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(a) (b)

Figure 4. The contour of the validation MSE from the subspace Wiener filter for two tasks: (a) the food reaching task and (b) the target
hitting task. The darker contour lines denote lower MSE level.
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Figure 5. The architecture of the generalized feedforward filter.

(a) (b)

Figure 6. The contour of the validation MSE from the gamma filter for two tasks: (a) the food reaching task and (b) the target hitting task.
The darker lines denote lower MSE level.

The memory depth D of the gamma filter consisting of K
taps is given by

D = K

µ
for µ < 1 or D = K

2 − µ
for µ > 1.

(15)

This shows that the gamma filter decouples the memory depth
from the filter order by adjusting a feedback parameter (µ).
In the case of µ = 1 (i.e., the FIR filter), the resolution is
maximized whereas the memory depth is minimized for a given
filter order. But this choice sometimes results in overfitting
when a signal to be modeled requires more time delays than
the number of descriptive parameters. On the other hand, the
gamma filter with the proper choice of a feedback parameter
can avoid overfitting by the decoupled memory structure.

The tap weights can be updated using the NLMS, and
therefore the computational complexity is similar to that of
FIR filters. A feedback parameter µ can also be adapted from
the data. Instead of adaptively learning µ from data, however,
we can determine the best combination of K and µ in terms
of the generalization error, by estimating the cross-validation
error for each set of Kj and µi, where Kj ∈ {2, 3, . . . , 10}
(ignoring the case of Kj = 1, which implements memoryless
process) and µi ∈ {0.1, 0.2, . . . , 1.9}.

The same cross-validation procedure is applied for the
gamma filter to find the optimal values of K and µ. In figure 6,
the contour map of the MSE for the validation set is depicted.
The minimum MSE values are found at (K, µ) = (4, 0.3) for
the food reaching task and (K, µ) = (10, 1.2) for the target
hitting task. The memory depth estimated by this empirical
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method becomes D ≈ 13 for the food reaching task and D ≈
12.5 for the target hitting task. The savings in the number
of parameters are 60% (3120 → 1248) for the food reaching
task. The temporal resolution of the gamma filter (which is
defined as R ≡ K/D) is different for the two tasks: R = 0.31
for food reaching and R = 0.8 for target hitting. This might
indicate that more irregular target hitting movement requires
finer temporal resolution in the neural input data.

4.3. Adaptive regularization with pruning

Since the neural firing data are highly variable creating a large
dynamic range of bin counts, the condition number of an input
correlation matrix may be relatively large. To reduce the
condition number, we can add an identity matrix multiplied
by a white noise variance to the correlation matrix, which is
known as ridge regression (RR) in statistics [20]. The criterion
function of RR is given by

J (w) = E[‖e‖2] + δ‖w‖2, (16)

where the additional term δ‖w‖2 smoothes the cost function.
The weight decay regularization can be viewed as a simple
online method to minimize the RR criterion function using the
stochastic gradient, updating the weights by

w(n + 1) = w(n) + η∇̂ζ(n) − δw(n), (17)

where ∇̂ζ(n) = ∂E[‖e(n)‖2]/∂w(n). Both RR and weight
decay can be viewed as implementations of a Bayesian
approach to complexity control in supervised learning using a
zero-mean Gaussian prior [24].

The choice of the amount of regularization (δ) may play
an important role in the generalization performance, since
there is a tradeoff between the condition number and the
achievable MSE for a particular δ. A larger δ can decrease
the condition number at the expense of increasing the MSE,
while a smaller δ can decrease the MSE but also increase
the condition number. Larsen et al [25] proposed that δ

can be optimized by minimizing the generalization error with
respect to δ. Following this procedure, we utilize the K-fold
cross-validation [26], which divides the data into K randomly
chosen disjoint sets, to estimate the average generalization
error empirically,

ξ̂ = 1

K

K∑
k=1

εk, (18)

where εk is MSE of the validation for the kth set. Then, the
optimal regularization parameter is learned by using gradient
descent,

δ(n + 1) = δ(n) − η
∂ξ̂ (n)

∂δ
, (19)

where ξ̂ (n) is an estimate computed with δ(n) and η > 0 is
a learning rate. See [25] for the procedure of estimation of
∂ξ̂ (n)/∂δ using weight decay.

In the experiments, we set K = 10, η = 10−6 and update
δ until the difference |ξ̂ (n + 1) − ξ̂ (n)| is less than 10−3. The
term ∇̂ζ(n) in (17) is estimated by the NLMS. In experimental
results, δ converges to 1.36 × 10−5 for the food reaching task
and 1.02 × 10−5 for the target hitting task. Then, we train the
filter using fixed δ with the entire training samples (10 000) to
obtain the regularized model.

4.4. Generative model: the Kalman filter

The linear models described so far attempt to directly
approximate the input–output mapping from neural firing rates
to the hand kinematics such as

d(n) = f (x(n)) + ω(n), (20)

with the assumption of an additive white Gaussian noise
ω(n). However, there have been different approaches from
a generative modeling viewpoint [8, 27, 28]. In these
approaches, neural firing rates are assumed to be stochastically
generated from the hand kinematics with some noise
υ(n) as

x(n) = f (d(n), υ(n)). (21)

This model leads to the likelihood of the observation of firing
rates given the state of hand kinematics, p(x(n)|d(n)). Since
we seek to decode the hand kinematics given the observation
of firing rates, Bayesian inference can be used to infer
the posterior probability, p(d(n)|x(n)). This inference can be
recursively performed by some assumptions of independence
[8]. There are many ways to model p(d(n)|x(n)), but the
Kalman filter has been a primary choice since it is optimal
with certain parametric assumptions and easy to implement.
In the Kalman filter, a linear Gaussian model is employed to
approximate the likelihood and a prior such that

x(n) = Hd(n) + υ(n), (22)

d(n + 1) = Ad(n) + ω(n), (23)

where both υ(n) and ω(n) are Gaussian noises, and H and
A are linear coefficient matrices. Since, p(d(n)|x(n)) is also
Gaussian, we can infer it by recursively estimating the mean
and covariance. The mean of p(d(n)|x(n)) will be our decoded
hand kinematics. More details about parameter estimation,
algorithms and discussions of the Kalman filter for BMIs can
be found in [27].

In our experiments, hand position, velocity and
acceleration are included in the hand kinematic states, and
neural spike counts in 100 ms bins are accounted for the
observation of firing rates. The empirical test results of the
Kalman filter are compared with other models as presented in
section 6.2.

5. Nonlinear mixture of competitive linear models

Although it is shown in previous sections that a number
of regularization methods can improve the generalization
performance for a linear model, there exists a fundamental
assumption of linearity that may impact performance. To
overcome this limitation, here we compare two nonlinear
models such as the straight time-delay neural network (TDNN)
[13] and a nonlinear mixture of competitive multiple linear
models (NMCLM) [16].

In the TDNN, the mapping between neural activity and
motor parameters (hand positions, velocities and griping
forces) is estimated by nonlinearly combining spike counts
(and their past values) from each neuron. The tap delay lines
in the input layer preset the memory to account for temporal
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Figure 7. An overall diagram of nonlinear mixture of competitive linear models.

dependencies in neural activity. This architecture has a single
hidden layer with sigmoid nonlinearities and the output layer
with linear processing elements (PEs). The output of the
TDNN is given by y(n) = W2f

(
WT

1 x(n) + b1
)

+ b2, where
the weights and biases W1, W2, b1 and b2 are trained by the
error backpropagation algorithm [13].

NMCLM consists of a bank of multiple linear models and
a multilayer perceptron (MLP) with single hidden layer. The
overall architecture of NMCLM is equivalent to the TDNN,
but the training procedure is different as depicted in figure 7.
A two-stage training procedure that is performed sequentially
includes the competitive learning with the NLMS for the linear
models and the error backpropagation for the MLP. Note that
the same desired response is used in both training stages.
The underlying reasoning in the multiple local linear models
is that a complex nonlinear mapping can be approximated
by dividing it into simpler linear mappings and combining
them properly. Fancourt and Principe successfully designed a
gated competitive system consisting of multiple linear models
for nonstationary signal segmentation based on this approach
[29]. If we assume that for different local regions in the
hand trajectory space the mapping from neural activity to
motor variables differs from the others, linear models each
specializing in a local region will enhance the prediction
performance significantly.

The multiple linear models are trained by competitively
updating weights using the NLMS. The criterion to be used in
the competition is the integrated squared error (ISE) that each
competing model produces, given by

ϕi(n) = (1 − α)ϕi(n − 1) + α‖ei (n)‖2, i = 1, . . . , M,

(24)

where M is the number of models and α is the time constant
of the leaky integrator. A linear model that exhibits the
least ISE wins the competition at a given time instance, and

only the weights of the winning model are updated (hard
competition) [29]. With this training procedure, each model
can specialize in local regions in the joint input/desired signal
space. Figure 8 demonstrates the specialization of ten trained
models by plotting their outputs with the common input data
(40 s long) in the 3D hand trajectory space. This figure
shows that the input–output mappings learned by each model
display some degree of localization, although overlaps are still
present. These overlaps may be consistent with a neuronal
multiplexing effect as depicted in [7], which suggests that the
same neurons modulate for more than one motor parameter
(x and y coordinates of hand position, velocity and griping
force).

The competitive local linear models, however, require
additional information for switching when applied in BMIs,
since the desired signal that is necessary to select a local
model is not available in practice. A gate function as in
the mixture of experts [30] utilizing input signals needs to
be trained to select a local model. Here we opted for a
MLP that directly combines the predictions of all models.
Therefore, the overall architecture can be conceived as a
nonlinear mixture of competitive linear models (NMCLM).
This procedure facilitates training of each model compared to
the TDNN, since only one linear model is trained at a time in
the first stage, while only a relatively small number of weights
are trained by error backpropagation in the second stage. It has
been shown in [16] that the mutual information [31] between
the desired output and the competitive model outputs is larger
than the first layer outputs of the equivalent TDNN (all the
weights are trained only by error backpropagation), which
shows that the training in NMCLM is more efficient.

In the experiments, the topology of NMCLM consists of
ten competitive linear models for each coordinate and a single
hidden layer MLP with M inputs (M = 10 × C, C is the
output dimension: 2 or 3), 30 hidden PEs with hyper-tangent
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Figure 8. Demonstration of the localization of multiple linear models. The common input data are fed to ten competitively trained models.
Then, the 3D outputs from each model (dark dots) are plotted on top of the common actual hand trajectory (thin lines).

function and C linear output PEs to predict each hand position
coordinate. Each linear model has the same topology as that
used in section 3. The number of multiple models and the
number of hidden PEs were chosen empirically (they was not
optimized) by varying their number in multiple runs. The hard
competition learning rule is utilized along with the NLMS
for the training of linear models and the conjugate gradient
algorithm is used to train the MLP.

Training of the MLP is repeated with 100 random initial
conditions and the solution with the least MSE is selected.
The time constant of the leaky integrator (α) is determined by
the hold-out cross-validation method utilized in section 4.1.
The data are divided into a 9000-sample training set and a
1000-sample validation set. The resulting values of α are 0.3
for the food reaching task and 0.6 for the target hitting task.

The TDNN is trained with the same input and desired
response as in NMCLM. The 30 PEs in the hidden layer use
tanh nonlinearities. All the weights and biases are trained by
the error backpropagation with the MSE criterion.

Even with the simpler training approach, there are over
30 000 parameters in the NMCLM to be trained. Each linear
model with around 3000 parameters is trained with a fraction
of the total number of samples (only those pertaining to its
local area of the space), which is considered too high for the
restricted number of training samples. With linear models built
from gamma filters, we can significantly reduce the number of
parameters in the first layer of NMCLM, while preserving the
same level of computational complexity in training.

6. Comparison of models

In this section, we summarize the evaluation of the
performance for all models introduced in this paper. We
emphasize, however, that the comparison is done for datasets
containing 100–200 simultaneously recorded neurons for
which the standard Wiener filter algorithm yielded very good
performance. With the increase of the number simultaneously
recorded neurons, task complexity and complexity of predicted
motor parameters, what we see only as tendencies in
these comparisons, may become important features of BMI
design.

Before presenting quantitative results, we first
demonstrate the outputs of every model along with the
actual hand trajectories for food reaching in figure 9 and
for target hitting in figure 10. Since our approaches have
been developed by assigning the Wiener filter as a golden
standard, observations in these figures will be made mainly
by comparing trajectories of models with that of the Wiener
filter.

First, we can observe that NLMS can predict better rest
positions than the Wiener filter. The empirical results indicate
that a linear filter trained by the NLMS improves the accuracy
of the estimation especially during rest for the reaching
task (see table 1), meaning that the weights found a better
compromise between the two very different characteristics of
movement and rest.

This improvement has been achieved because of the
NLMS update rule, where the weights are updated with a
relatively higher learning rate during rest due to the fact that
total firing count relatively decreases when monkeys do not
move arms. Thus, for the class of motor behaviors in which
movement periods are separated by periods of rest, the NLMS
algorithm can capture more information about rest positions
than the Wiener filter.

Next, we can see that regularized models yield smoother
output trajectories than the Wiener filter especially during
rest. Also, NMCLM provides the most accurate movement
prediction as shown in figure 9(f). NMCLM shows its
ability to follow the rest position with little jitter and to track
rapid changes of hand trajectory during movements. This
is due to the nonlinear global structure of the NMCLM.
On the other hand, in figure 10, all models show similar
prediction performance for the target hitting task. Performance
measures presented later will demonstrate this performance
similarity (although there are statistical differences between
models).

6.1. Comparison of the parameters of linear filters

We now compare the parameters of the four linear models:
the Wiener filter, the linear model trained by NLMS, the
gamma filter and the linear model regularized by weight
decay. Note that other models (i.e. the Kalman filter, the
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Figure 9. The actual hand trajectory (dotted line) and the estimated hand trajectory (solid line) in the x, y and z coordinates for the 3D food
reaching task on a sample part of the test data: (a) the Wiener filter, (b) the linear filter with NLMS, (c) the subspace Wiener filter, (d) the
gamma filter, (e) the linear filter regularized by weight decay and (f ) NMCLM.

subspace Wiener filter or nonlinear models) are not included
here due to the complexity of extracting individual neuronal
contributions to model output. We first average the weight
magnitudes over time lags of individual neuronal channels
and over the output dimension in order to represent the
composite weight associated with single neurons since the
number of delays in each model is different. Then, the average
magnitude per neuron is multiplied by the standard deviation of
individual neuron’s bin count to obtain a measure of neuronal
contribution; this is defined as the average sensitivity of the
output to each individual neuron [32]. Figure 11 shows
individual neuron sensitivity for the four models. Note that
for visual purposes we scale the sensitivity values such that
the maximum sensitivity becomes unity.

It can be observed in figure 11(a) that the normalized
weight magnitude distributions are similar among models
except for the gamma filter. The distribution of the NLMS-
trained model follows that of the Wiener filter, but decreases
the smaller magnitude weights, which might explain the
higher performance during rest. Weight decay further prunes
weights, therefore generating sparse distribution of weights,
which can help generalization. The distribution of the gamma
filter’s weights differs as can be expected due to the different
time scale. It weights more neurons 57, 84, 87 and 94,
where neuron 57 is the neuron with highest firing rate and
neuron 94 has one of the highest sensitivities according to
the analysis in [32]. For the target hitting task as shown in
figure 12(b), all models present similar weight magnitude
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Figure 10. The actual hand trajectory (dotted line) and the estimated hand trajectory (solid line) in the x and y coordinates for the 2D target
hitting task on a sample part of the test data: (a) the Wiener filter, (b) the linear filter with NLMS, (c) the subspace Wiener filter, (d) the
gamma filter, (e) the linear filter regularized by weight decay and (f ) NMCLM.

distributions, which likely explains the similar performance
of all models.

6.2. Statistical performance comparison

Tables 1 and 2 summarize the generalization performances
of all models using measures introduced in section 3. There
are ten food reaching movements in the test data for which
the performances are measured. We start by pointing out
that the performance of the Wiener filter, our baseline, is
relatively similar to all the other implementations, which
is surprising. It is interesting to compare the performance
versus the number of degrees of freedom of each model.

As is well known, the number of parameters improves the
bias of the model, but penalizes the variance, so the overall
performance is a compromise. We can see that the gamma
filter appreciably decreases the number of parameters of the
base linear model and slightly improves the performance with
the best combination of K and µ, as shown in tables 1 and 2.
The performance of the subspace Wiener filter for both tasks
also reaches slightly higher level than those of the Wiener
filter or the NLMS, which indicates that generalization was
improved by the subspace projection. Note, however, that
the number of free parameters is not the only requirement for
good performance. The NMCLM has many more parameters,
but since it has an internal competitive topology, performance
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Table 1. The generalization performances of linear and nonlinear models for the 3D food reaching task.

Measures No of weights CC (movement) SER (movement) (dB) CC (rest) SER (rest) (dB)

Wiener 2 973 0.76 ± 0.19 4.76 ± 1.87 0.03 ± 0.22 2.40 ± 2.80
NLMS 2 973 0.75 ± 0.20 4.85 ± 2.11 0.06 ± 0.22 3.40 ± 2.76
Gamma 1 191 0.78 ± 0.19 5.25 ± 1.97 0.07 ± 0.21 3.59 ± 3.11
Subspace 1 113 0.77 ± 0.18 4.84 ± 2.06 0.09 ± 0.20 3.78 ± 2.57
Weight decay <2 973 0.77 ± 0.18 4.73 ± 2.04 0.07 ± 0.22 3.76 ± 2.78
Kalman 1 017 0.78 ± 0.20 4.32 ± 1.97 0.05 ± 0.25 2.26 ± 3.85
TDNN 29 823 0.77 ± 0.17 4.87 ± 2.56 0.02 ± 0.22 3.29 ± 5.67
NMCLM (FIR) 30 753 0.81 ± 0.15 5.90 ± 3.00 0.03 ± 0.22 5.64 ± 4.00
NMCLM (gamma) 12 933 0.81 ± 0.19 6.08 ± 3.19 0.06 ± 0.23 6.23 ± 5.23

Table 2. The generalization performances of linear and nonlinear models for the 2D target hitting task.

Measures No of weights CC (x) SER (x) (dB) CC (y) SER (y) (dB)

Wiener 3 842 0.66 ± 0.02 2.42 ± 0.54 0.48 ± 0.10 1.08 ± 0.52
NLMS 3 842 0.68 ± 0.03 2.42 ± 0.55 0.50 ± 0.08 0.90 ± 0.49
Gamma 3 842 0.70 ± 0.02 2.81 ± 0.69 0.53 ± 0.09 1.55 ± 0.43
Subspace 882 0.70 ± 0.03 2.80 ± 0.83 0.58 ± 0.08 1.90 ± 0.57
Weight decay <3 842 0.71 ± 0.03 2.79 ± 0.92 0.57 ± 0.08 1.75 ± 0.46
Kalman 1 188 0.71 ± 0.03 2.77 ± 0.65 0.58 ± 0.10 1.63 ± 0.76
TDNN 57 691 0.65 ± 0.03 2.24 ± 0.59 0.51 ± 0.08 1.10 ± 0.39
NMCLM (FIR) 58 622 0.67 ± 0.03 2.62 ± 0.53 0.50 ± 0.07 1.23 ± 0.40
NMCLM (gamma) 58 622 0.67 ± 0.02 2.55 ± 0.61 0.47 ± 0.07 0.95 ± 0.40

Figure 11. The average sensitivity of the Wiener filter (thin dotted
lines), NLMS (thin solid lines), the gamma filter (thick dotted lines)
and weight decay (thick solid lines) to neuronal inputs in the BMI
data of two tasks: (a) the food reaching task and (b) the target hitting
task.

is more accurate than any of the others. Substitution of the
gamma filters for the FIR filters also improves the performance

further. We also see that the TDNN suffers from poor training,
since it has the same number of free parameters as the NMCLM
but performs worse than this model.

Table 1 also shows that presenting results for the overall
trajectory may be misleading. Indeed, the resting task is
much harder to predict than when the animal is moving the
arm. This table also shows that the CC and the SER are
measuring two slight different things, since the numbers do
not vary consistently amongst the models. The target hitting
task seems harder to predict than the food reaching task as we
can conclude from the CC and SER. It is also interesting to
note that the x direction is considerably harder to predict than
the y direction for reasons that are not clear at this point.

To quantify more precisely these differences, we test the
statistical difference between the Wiener filter and all the other
models. We first assume that the average Euclidean distance
between the actual and the estimated position in the test data
is a sufficient measure of model performance. This measure
can be denoted by the error vector E[|e|].

To compare the performances of different models, we
test the difference between the distributions of E[|e|]. The
samples of |e| from non-overlapping time windows with the
lengths of 4 s (same as for estimation of CC and the SER)
are collected, and E[|e|] is estimated from samples for each
window. A summation used to estimate the mean leads
to Gaussian random variables by virtue of the central limit
theorem (CLT), by which we can approximately satisfy the
normality and independence condition for the application of
the t-test to the samples of E[|e|].

We first define 
 as the difference between E[|e|] for the
Wiener filter and for each of the other models as


(k) = E[|e|]M(k) − E[|e|]W(k), (25)

where E[|e|]M(k) denotes the evaluation of E[|e|] in the kth
window for the model under comparison and E[|e|]W(k) does

156



A comparison of optimal MIMO linear and nonlinear models for brain–machine interfaces

Figure 12. The first three projection vectors in PCA for (a) the food reaching task and (c) the target hitting task, and in PLS for (b) the food
reaching, and (d) the target hitting task, respectively. Note that PCA provides single projection vector for all coordinates while PLS
separates vectors for each coordinate.

in the same window for the Wiener filter. Then, 
(k) is
given by


(k) = 1

K

∑
n∈�k

|e(n)|M − 1

K

∑
n∈�k

|e(n)|W

= 1

K

∑
n∈�k

|e(n)|M − |e(n)|W, (26)

where �k indicates the kth sample window and K is a window
size (40 samples in the experiment). Note that |e(n)|M and
|e(n)|W are aligned synchronously in time, indicating errors
for the same hand position. If we assume that |e(n)|M −
|e(n)|W in (26) realizes an independently and identically
distributed (i.i.d.) density function of the difference of |e|
between models, then 
(k) approximately follows a Gaussian
distribution due to the CLT no matter which model is
compared. Hence, we can apply the t-test to the Gaussian
random variable 
 that is realized by {
(k)} for k = 1, . . . ,

Nk , where Nk is a number of windows (Nk = 75 in experiments).
The hypotheses for the one-tail t-test then become

H0: E[
] � 0,

HA: E[
] < 0.
(27)

Given the significance level of α, if the null hypothesis is
rejected we can claim with the confidence level of (1 − α) that

Table 3. The t-test results for the performance differences between
the Wiener filter and other models.

Food reaching Target hitting

Significance level 0.01 0.05 0.01 0.05

NLMS 1 1 0a 0
Gamma 1 1 1 1
Subspace 1 1 1 1
Weight decay 1 1 1 1
Kalman 0 0 0 1
TDNN 0 0 0 0
NMCLM (FIR) 1 1 0 0
NMCLM (gamma) 1 1 0 0

a The test result of 0 indicates the acceptance of null
hypothesis, while 1 indicates the rejection of null
hypothesis.

the compared model produces less error on average than the
Wiener filter.

The test results are presented in table 3. For the food
reaching task, the null hypothesis is rejected for all models
except TDNN. Note that TDNN shows higher mean SER
during rest, but with a relatively large variance. For the
target hitting task, however, only four models including the
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(a) (b)

Figure 13. The histogram of the magnitudes of weights over all coordinates of hand positions, trained by weight decay (solid line) and the
NMLS (dotted line) for two tasks: (a) food reaching and (b) target hitting.

gamma filter, the subspace Wiener filter, the linear model
with weight decay and the Kalman filter, are shown to yield
statistically different distribution of E[|e|]. These results
are fairly consistent with performance measures in tables 1
and 2.

6.3. Additional performance evaluations

To investigate further the difference between the subspace of
PCA and PLS, the first three projection vectors are estimated
by setting λ = 0 or 1 in (13) as presented in figure 12. Note
that PLS yields separate vectors corresponding to each hand
position coordinate since it utilizes the desired response, while
PCA needs only one projection for all coordinates. In the
food reaching task, the projection vectors of PCA have large
weights on the neurons that fire frequently. For instance,
the neurons indexed as 42, 57 and 93 are empirically known to
have the largest firing counts. Since the neural firing data are
sparse, PCA attempts to build a subspace with frequently firing
neurons. On the other hand, the weights in PLS projection
have larger values on different neurons which do not fire
very frequently such as the neurons indexed as 7 and 23.
From the sensitivity analysis studied in [33], these neurons
are known to significantly contribute to input–output mapping
of BMIs. Therefore, PLS is able to utilize the information
from important neurons that do not even fire very frequently
by exploiting the joint space. It also explains why the MSE is
better in smaller subspace dimensions. For the target hitting
task, we can also observe that more neurons are involved in
the projection vectors in PLS than PCA. The neurons with
larger weights in the PCA projection, again, are observed
to fire more frequently. It is interesting to observe that for
the target hitting task the subspace dimension obtained from
the cross-validation is of the same order as the number of
neurons obtained in the neuron dropping analysis performed
in [33]. In fact, the number of important neurons for which
the correlation coefficient between model outputs and desired
hand trajectories is maximized is 35, which is close to the
subspace dimension of 44.

In order to demonstrate the effect of weight decay, the
histogram of the weight magnitude including all directions

of the hand positions is depicted in figure 13. Note that the
number of weights that have smaller magnitudes increases
with weight decay. For instance, the number of weights that
are close to zero is approximately 345 for weight decay versus
75 for NLMS in figure 13(a) and 460 for weight decay versus
150 for NLMS in figure 13(b). It shows that more weights
are pruned by weight decay, thus the degree of freedom of the
model reduces. Hence, the reduced degree of freedom can
help generalization as examined by measuring performance in
the test data.

6.4. Comparison with the Kalman filter and population
vector algorithm

In tables 1–3, we also present comparisons with the Kalman
filer that is a linear model based on a different modeling
approach. We can see that the Kalman filter has the smallest
number of free parameters among all the models, while its
performance is not the best for the food reaching task, but
approaches the best result for the target hitting task. We were
expecting that the ability to modify the Kalman gain during
test to accommodate time-varying fluctuations would result
in a better performance, but probably the errors incurred in
estimating the large covariance matrix linking the states with
the input are the culprit for the timid overall performance.
Also, the apparent nonlinearity shown in the kinematics of
the food reaching task (e.g. discrimination between movement
and rest) might prevent the Kalman filter, in which temporal
priors of kinematics are linearly modeled, from estimating
kinematics more accurately. However, this bottleneck can
be broken to some extent by extending the states to include
a discrete state which discriminates between the active and
inactive periods of movements. In fact, a recent work of Wood
et al has reported the increase of decoding performance by
inferring this discrete state as well as hand kinematics through
a Bayesian model [34].

The last model to be compared is the decoding model
proposed by Georgopoluous and called the population vector
algorithm (PVA) [35–37]. The PVA approach is built upon
experimental evidence that individual neurons in an ensemble
modulate their firing rates for movement directions. In this
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algorithm, the preferred directions of individual neurons are
independently determined, and subsequently weighted by their
instantaneous firing rates. The sum of the weighted preferred
directions defines the population vector which estimates
the current movement direction. This PVA model is given
by [36]

P(n) =
M∑
i=1

xi(n) − x̄i

Ci

· Bi

Ci

, (28)

where the population vector P(n) is a weighted sum of
preferred direction vector Bi and the weight is determined
by each cell’s firing activity; xi(n) is the firing rate of cell
i at time instance k, x̄i is a mean firing rate and Ci is a
normalization factor to scale the maximum firing rate to 1.
This model determines the movement direction from neural
activity, but the reconstruction of hand trajectory also requires
the estimation of the speed. Georgopoluous et al [35] directly
used the magnitude of the population vector, |P(n)|, for
estimating the instantaneous speed, and Moran and Schwartz
[36] extended the PVA model to include the speed of the hand.
Then, the trajectory of the hand position was reconstructed by
a time series of population vectors that were connected tip to
tail as time increased.

The PVA model extended by Moran and Schwartz was
applied to our 2D target reaching data. The evaluation in
test data demonstrated that the performance of PVA was far
below the Wiener filter (e.g. the correlation coefficient of the
PVA was on average 60–70% of the Wiener). These results
are similar to those communicated by Wu et al [27]. As
discussed by these authors, this poor performance of the PVA
in the target reaching data is mainly due to the fact that the
error can propagate through the temporal integration of the
population vectors and the sampled neuronal population may
not encode the movement direction uniformly. Schwartz et al
also indicated in their analysis of decoding algorithms the
weakness of the PVA compared to the Wiener filter in terms
of the fact that the PVA does not take full advantage of the
temporal characteristics of neural firing activity [37]. In
fact, the direction-based PVA model may not fit as well as
other models for the reconstruction of complicated continuous
trajectory including the data presented in this paper. Yet, one
must note that the performance comparison presented here can
be less significant since the PVA model may not be suitably
optimized to our data.

However, in the closed-loop BMIs where an individual can
utilize the sensory feedback to control neural prostheses, the
PVA can be modified to yield more accurate reconstruction.
Recently, Taylor et al [1] proposed the adaptive method for
the population vector algorithm in the closed-loop system
by adjusting the population vector parameters according to
task performance. The related studies have shown that the
adaptation of the parameters during brain control significantly
increased the target acquisition performance [38]. These
studies may indicate that there are still a lot of opportunities for
the PVA to suit well for more complicated BMI applications
in the closed-loop environment.

7. Discussion

Inspired by the performance of Wiener filter algorithms in
estimation of movement parameters from the activity of large
(∼100 cells) neuronal ensembles, we conducted an extensive
comparison study of MIMO filters in BMI design. As
test data, we used two datasets, each collected in different
monkey experiment, one in a New World monkey reaching
for food and one in an Old World monkey hitting a visual
target. Although in certain comparisons different models had
very similar performance quality, we anticipate that with the
development of BMI field and especially with the increase
in the number of simultaneously recorded neurons, some of
these ideas will find important applications. In the present
datasets, all the MIMO filters including the standard Wiener
filter performed very well in spite of the large number of
degrees of freedom (over 3000 parameters) and the absence of
regularization. The major reason for such high performance
is the excellent quality of the neuronal recordings and the
detection and sorting algorithms. Multielectrode arrays were
strategically implanted in cortical areas known to be associated
with arm and hand movements. In addition, special care
was taken to keep experimental conditions controlled and
restricted to specific task requirements. It still remains to be
seen how the linear models scale up as the range of motor
performances and experimental conditions becomes more
complex.

The number of parameters of the linear model was
decreased using two different approaches for pruning in time
and in the space of the electrodes. In the time dimension, we
used gamma delay operators instead of ideal delays to decrease
the number of coefficients while spanning the same memory
depth (although with a coarser resolution). The gamma model
produces statistically better models when compared to the
Wiener filter.

Pruning in electrode space is achieved using two
different strategies: selecting important channels and using
regularization methods to control complexity. The selection
of channels with PCA (input neuron information) does not
perform well; however, a combination of PCA and PLS
that chooses neurons based on their importance in the joint
(input and desired signals) space is able to statistically
outperform the conventional Wiener filter in both tasks.
Likewise, the weight decay regularization also statistically
outperforms the Wiener filter. However, the regularization
parameter must be appropriately selected in cross-validation,
otherwise the performance is very brittle. Therefore, we
conclude that the tools of regularization theory are an
asset for optimal modeling in BMIs, but the improvements
are smaller than expected in spite of being statistically
significant. Perhaps, regularization based on different norms
may improve performance further. Note that the number of
neurons (e.g. 30–40) that were optimally found in subspace
projection is relative to the total number of neurons (e.g.
192). Consequently, it may be possible to obtain a larger
subset of optimal neurons if the total number of neurons
increases. We also expect higher improvements using the
subspace projection methods for larger datasets (more than
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200 neurons; Carmena J M, Lebedev M A and Nicolelis
M A L, unpublished observations) and anticipate that these
techniques will be important in the foreseeable future when
the number of simultaneously recorded neurons surpasses
1000.

The nonlinear model showed better performance for one
dataset, but not for the other. Nonlinear models significantly
outperformed the linear counterparts for the food reaching
task, mostly due to their ability to follow better the non-
movement (hand at rest) portions of the desired response.
This is due to their ability to ‘shut-off’ parts of the network
by virtue of nonlinearity. However, in the target hitting task
where the hand is almost always moving, the performance
was very similar, being statistically indistinguishable from the
Wiener filter. Given the complexity of brain networks and
no a priori reason for them to have linear properties, this
was unexpected and may reflect the fact that it is harder to
train nonlinear models to the same specification of the linear
ones. Or simply that due to the large input space of BMIs
finding a linear projection space of reduced dimension (2D
or 3D) is sufficient when performance is the only metric. In
addition, one would expect a better performance in a nonlinear
model when it matches in some ways the performance of the
real brain network, otherwise it would falter. Linear models
on the other hand already incorporate well-known properties
of cortical neurons, such as directional tuning (typically
described by a cosine function), sensitive to position, velocity
and force.

We speculate that some nonlinear topologies may have
practical advantages when BMIs are implemented in real-
time digital signal processors. The work reported in [39]
shows that when memory constraints and clock cycles are
taken into consideration a recursive MLP (RMLP) requires a
smaller computation bandwidth and resources than the FIR
filter trained with NLMS. However, training of the RMLP is
still more complex than the NLMS algorithm, so further work
to find nonlinear topologies that train faster should be sought.
In terms of the regularization techniques, the gamma model
and the weight decay can easily be implemented in DSPs,
but the subspace Wiener filters require a substantial increase
in computation. Therefore, further work to simplify these
algorithms should also be pursued. In terms of deployment, a
BMI with 100 channels to predict 2D or 3D hand trajectories
based on the regularized NLMS filter can be implemented in
real time in a small Texas Instruments C33 WiFi board recently
developed by our group.

A comment regarding prediction performance of these
algorithms in terms of correlation coefficient (CC) is in order.
The CC of all these algorithms is capped at 0.8 for the
food reaching tasks and 0.7 for the target hitting tasks. It
is important to investigate if this limit is related to missing
data (only a tiny percentage of the motor cortex neurons are
probed) or if it is the intrinsic spatio-temporal nonstationarity
of the data that is not properly captured by this class of
models that learn based on stationarity assumptions. Another
important issue that should not be forgotten in the design of
better BMIs is how to effectively include neurophysiology
knowledge both in the filter topologies and in the cost
functions.

Once the models are fitted to the data, there is a wealth
of information that can be gained from analyzing the filter
coefficients. This is an area of research that is only now starting
and can provide a new window to understand population
coding during behavior.
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