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Error Whitening Criterion for Adaptive Filtering:
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Abstract—Mean squared error (MSE) has been the dominant
criterion in adaptive filter theory. A major drawback of the MSE
criterion in linear filter adaptation is the parameter bias in the
Wiener solution when the input data are contaminated with noise.
In this paper, we propose and analyze a new augmented MSE
criterion called the Error Whitening Criterion (EWC). EWC
is able to eliminate this bias when the noise is white. We will
determine the analytical solution of the EWC, discuss some inter-
esting properties, and develop stochastic gradient and other fast
algorithms to calculate the EWC solution in an online fashion. The
stochastic algorithms are locally computable and have structures
and complexities similar to their MSE-based counterparts (LMS
and NLMS). Convergence of the stochastic gradient algorithm
is established with mild assumptions, and upper bounds on the
step sizes are deduced for guaranteed convergence. We will briefly
discuss an RLS-like Recursive Error Whitening (REW) algorithm
and a minor components analysis (MCA) based EWC-total least
squares (TLS) algorithm and further draw parallels between the
REW algorithm and the Instrumental Variables (IV) method for
system identification. Finally, we will demonstrate the noise-rejec-
tion capability of the EWC by comparing the performance with
MSE criterion and TLS.

Index Terms—Error whitening, LMS, MSE, noisy system iden-
tification, RLS.

I. INTRODUCTION

HE MEAN squared error (MSE) criterion has been the

workhorse of adaptive filter and the Wiener filter theory
due to the simple and analytically tractable structure of the linear
least squares solution [1], [2]. Although the Wiener solution is
optimal in the least squares sense, the input covariance matrix
in the presence of additive white input noise yields a bias in
the optimal parameters when compared with the estimation ob-
tained with noise-free data [1], [2]. This is a major drawback,
since noise is omnipresent in practical scenarios. Significant re-
search efforts to improve MSE-based solutions in noisy cases
yielded many modifications [3]-[7]. Total-least-squares (TLS)
is one such method, which is quite powerful in eliminating the
bias due to noise [8]-[10]. Unfortunately, it involves singular
value decomposition (SVD) calculations that limit its applica-
bility. Even though fast TLS algorithms have been developed
[11]-[13], some inherent drawbacks of TLS include equal input
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and output noise power constraint and exact model order knowl-
edge, which prevent its application in many problems [10], [14].
The instrumental variables (IV) method proposed as an exten-
sion to the least-squares (LS) has been previously applied for
parameter estimation in white noise [15]. This method requires
choosing a set of instruments that are uncorrelated with the noise
in the input [15]. Yet another classical approach is the subspace
Wiener filtering [1], [2]. This approach tries to suppress the bias
by performing a PCA subspace projection and then training a
filter in the reduced input space. Subspace Wiener filtering im-
proves the SNR when the signal power is already greater than
the noise power [16]. Otherwise, it fails since noise and signal
subspaces cannot be distinguished.

In this paper, we will propose a new criterion called the error
whitening criterion (EWC) to solve the problem of parameter
estimation in white noise. We introduce a correction term to the
MSE, based on the time differences of the error signal that leads
to an augmented cost function with interesting properties. In-
stead of minimizing the mean squared error, the EWC formu-
lation enforces zero autocorrelation of the error signal beyond
a certain lag; hence, the name Error Whitening Criterion. We
will then derive adaptive algorithms that estimate and track the
optimal EWC solution. The rest of the paper is organized as fol-
lows.

In the next section, we will propose the error whitening crite-
rion and discuss its properties in Section III. In Section IV, we
will derive a stochastic gradient algorithm and the conditions
for guaranteed convergence. In Section V, the Recursive Error
Whitening (REW) algorithm will be presented, and we will con-
trast this with the IV method and briefly discuss a minor compo-
nents based algorithm for EWC. Section VI contains simulation
results that evaluate the performance of EWC and other methods
in parameter-estimation problems. Discussion on the effects of
under modeling will be presented followed by conclusions.

II. ERROR WHITENING CRITERION

Suppose that noise-free training data of the form (xy, dy),
generated by a linear system with weight vector wo (the true
weight vector) through dj, = X} wr, is provided. Assume that
the input vector x;, € R™, the weight vector wr € R™, and
the desired output d;, € R. Suppose that the weight vector of
the adaptive linear system is sufficiently long (n > m), which
allows us to assume without loss of generality that the length
of wr is n as well since we can extend wp by padding zeros.
The quadratic form in (1) gives the cost function of EWC, and
its unique stationary point (i.e., the weight vector that makes the
gradient zero) gives the sought optimal solution. In (1), 5 € R
and the following definitions hold: e;, = dj — XZW./ e = dk —
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xT'w, where dy = dy, — dg—p, %) = X} — Xp_r,and L > 0 is
an integer.
J(w)=E [e;] + BE [é7] . (1

Throughout the rest of the paper, we will use the following
notations: The noisy input vector Xy, the noise-free input vector
X1, and the input noise vector v; obey X = Xj + Vi; the
noisy desired signal cfk,Athe noise-free desired signal dj, and
noise uy, are related by dy, = dj, + uy. In the case of an adap-
tive linear neuron (ADALINE), vy, is temporaly white, although
its covariance matrix is arbitrary. In the case of an adaptive
FIR filter, vy, is composed of delayed versions of a temporally
white noise signal vy. Similarly, uy is assumed to be white.
We define the following symmetric matrices: The input auto-
correlation matrices R = E[xxxj ], R =E [xkxk] RL =
Elxi—x% + xxx? ;], and R; = Elxp 1% + xpx% ]
for noise-free and noisy signals; the input noise autocorrelatlon
matrices V. = E[vyvi],and Vi = E[vi_rvi + vivi_i];
the input derivative autocorrelation matrices S = E[x;X} ]
and S = E'[)Ack;cg] for noise-free and noisy signals. We also
define crosscorrelation matrices following the same structure:
the correlation between the input vector and the desired signal
P :AE[XkdkL P :A E[)A(kd]iL PL = E[Xk,Ldk + Xkdk,[‘],
and Py, = E[X;_pdy + Xpd).L]; the correlation between the
input vector and desired signal derivatives Q = F [Xrd}], and
Q = E[xydy]. The following theorems and lemmas address the
analytical solution of EWC for linear adaptive systems and the
structure of the performance surface as a function of the param-
eter 0.

Lemma 1: In the noise-free training data case, i.e.,
with (xg,dy), the true weight vector satisfies the equation
R LW = P L-

Proof: This result follows immediately from the substitu-
tion of dj, = ka,wT and dj_1, = le ;W in the definitions of
R and P . Notice that the Wiener—Hopf equations correspond
to the special case when L = 0. O

Theorem I (Analytical EWC Solution): Suppose the training
data are noisy, i.e., we have (X, di). The following are equiv-
alent expressions for the stationary point of the EWC perfor-
mance surface given in (1).

W, = (R+48)7'(P + Q) o)
W, = [(14+26)R - BRL] (1 +28)P — BPL]. (3)
Proof: Substituting e, = dAk — )A(fw and ék = ;lk — )A(:W
yields the following explicit expression for J(w):
. ~2
J(w) = E [&] + 6 [dk}

wl(R+6S)w — 2P + Q) w. (@

Taking the gradient with respect to w and equating to zero

9J(w)
ow
= W, = (

—2(P+4Q)=0
LP +5Q). (5)

=2(R + AS)w
+8S)"
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In order to show the equivalence of (3) with (2), we notice the
following identities: S =2R + RL and Q = 2P + f’L. Sub-
stituting these in (2) yields (3). Notice that MSE corresponds to
the special case 3 = 0. O

Lemma 2: In the noise-free case, regardless of the specific
value of (3, the optimal solution of EWC is equal to the true
weight vector, i.e., W, = Wr.

Proof: Inthe noise-free case, the optimal solution of EWC
is given by w, = [(1 + 28)R — BRz][(1 + 28)P — SP].
Once again, directly substituting the definitions dy = x¥wr
and d_, = x}_;wr yields w, = wr. O

It is easy to show that the noisy correlation matrices are
related to the noise-free signal and noise correlation matrices
through the following set of equations:

R=E[x%] =R+V
S = B[(%r — %p—r)(Xr — Xr—r)"]
:2(R—|—V) -R; -V,

P = E[%pdy] = P

Q = E[(%s, — %p_)(dp — dp_)T] = 2P — Py,
L

L

=R.+V,
=P;. (6)
Theorem 2 (Noise Rejection With EWC): If = —1/2,
V; = 0, and Ry is invertible, then the optimal solution of

EWC obtained using noisy data is equal to the true weight
vector of the reference model that generated the data.

Proof: Clearly, when the specified conditions in the the-
orem are met, the given analytical solution w,, = [(1 + 20)
R — AR.]7[(1 + 28)P — 8P ] reduces to w, = R;'P;,
which is identical to the true weight vector due to Lemma 1. [1

In the FIR filter case, since the input noise vector consists
of delayed versions of the additive white contaminating noise
signal, selecting L. > n, where n is the length of the adaptive
filter, will guarantee that Vi, = 0.Inthe ADALINE case, L > 1
is sufficient since the input noise vector is assumed to be tem-
porally white.

III. SOME PROPERTIES OF EWC ADAPTATION

1) Performance Surface: The performance surface of the
MSE criterion for linear adaptive filtering is a smooth convex
function with a single global minimum. However, the shape of
the performance surface for EWC cost function changes with 3
and is also dependent on the eigenvalues of the matrices R and
R - Note that if 3 > 0, the performance surface will remain
convex because R + I6] Sisa symmetric positive definite matrix.
When # < 0, the stationary point can be a global maximum,
global minimum, or a saddle point as shown in the contour
plots of Fig. 1.

2) Orthogonality of Error to Input: In the case of MSE with
noise-free input and sufficiently long filter (the effects of un-
dermodeling will be dealt later), the optimal solution results
in an error signal that is orthogonal to the input vector, i.e.,
Elerxi] = 0 [1], [2]. Similarly, at the optimal solution of
EWC, the error vector and the input vector satisfy the relation-
Ship ﬂE[eka_L + ek_ka] = (1 + 2/3)E[ekxk] forall L > n,
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Fig. 1. Contour plots of the EWC performance surface in two dimensions
(2-D) with 3 = —1/2 showing stationary point as (left) global minimum,
(center) saddle point, (right) and global maximum.

as long as the adaptive filter is longer than the true filter. For
B = —1/2, we obtain Flegxy_1 + ex_rXx] = 0. This result
reveals an interesting insight if interpreted in terms of Newto-
nian physics, which we state here: The optimal solution of EWC
tries to decorrelate the residual error from the estimated future
value of the input vector (see Appendix A for details).
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3) Why This Criterion Is Called EWC: Consider linear
filter adaptation with noisy data. The autocorrelation of the
error signal for lag L > n is given by (7). Clearly, if the input
autocorrelation matrix at lag L is nonsingular, then the error
autocorrelation at lag L becomes zero if the weight vector is
identically equal to the true weight vector. In other words, the
criterion tries to partially whiten the error signal for lags greater
than or equal to the length of our adaptive filter. However, the
fact that p.(L) = 0 for all L > n is true only for the case when
the adaptive filter length is longer than the true filter length
(otherwise, p.(L) = 0 only for the specified lag). We will
revisit this property again in Section VI in our discussions on
undermodeling effects.

pe(L) = Elexer—r]
=E [(xp(wr — W)+ up — Vi w)
X (xp_p(Wr — W) +up—r — vi_w)]
=F [(WT —w)'xpxt [ (wr —w)
+ (uk - vfw) (uk_L - va_Lw)]

=(wr—-w)'E [xkxf_L] (wp —w). @)

In the next section, we will propose an online stochastic gra-
dient-based method to compute the optimal EWC solution. We
will derive the conditions for guaranteed convergence and show
the expressions for excess error autocorrelations at lags greater
than the length of the filter.

IV. STOCHASTIC ERROR WHITENING: EWC-LMS ALGORITHM

Consider the EWC cost function and its gradient given in (4)
and (5). This exact gradient can be approximated using the sto-
chastic instantaneous gradient by removing the expectation op-
erators, which yields

=~ —Z(ékfik + ﬂék;(k) (8)

Traditionally, optimization problems involve minimization
or maximization of an objective function. In the case of EWC,
the stationary point might sometimes be a saddle point, and
hence, the traditional fixed-sign gradient approach (for max-
imization or minimization) will fail to converge in a stable
manner. On the other hand, if we utilize additional informa-
tion regarding the local curvature of the performance surface,
we can modify the gradient accordingly to converge to the
desired saddle point. For offline training, the convexity of a
local parabola passing through the current weight vector and
extending along the gradient direction could be used to deter-
mine the sign. If this parabola is convex (i.e., if it has a positive
coefficient for the quadratic term), then negative gradient must
be employed. Otherwise, the update must proceed along the
positive gradient direction. This evaluation requires keeping
track of the input covariance matrices R and S, which is not
attractive. Alternatively, we can determine the sign at every up-
date by a stochastic estimate of the EWC cost computed using
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the most recent weights. This yields the EWC-LMS algorithm
given below.

. R 422 P 42
Weil = Wi + nkmgn(ei + ,Bek.) (éxxp + Béxxr).  (9)

Theorem 3: In the noise-free case, EWC-LMS given in (9)
converges to the stationary point in (5), provided that the step
size satisfies the following inequality at every update.

+ Beéd|

llexxr + Bérxgl2

2|ei

k] < (10)

Proof: First, notice that in the noise-free case, the sta-
tionary point w, given by (5) is the same as the true weight
vector wr. This is because at the true weight vector, the error
and its time derivative become zero making the update zero. In
order to prove convergence to this solution, consider the weight
error vector defined as €, = w, — Wy. Subtracting both sides
of (9) from w,, we get the weight error dynamics as €1 =
er —nisign(ei + Bé2) (erxy, + Bérxy ). Taking the norm of both
sides, we get ||lex+1]|% = |lex|* — 2nxsign(ef + Bé2 el (erxy +
BérXk) + nillexxk + Bérxi||?. If we allow the error vector
norm to decay asymptotically by making |lexi1]|?> < |lex|?,
then the upper bound on the magnitude of the step-size is given
by

2 |e£(ekxk + [3ekxk)|

M| < — (11
e llexxr + BérXrl|?

Since we assumed noise-free data, we have e{xk = ¢ and
eFxy = éx. Therefore, the upper bound reduces to (10). If

the step size satisfies this instantaneously computable bound,
the error vector norm is a monotonically decreasing sequence,
which eventually converges to the stationary point, which
is a zero vector, i.e., limy_ o |lex||> — 0, and this implies
limg oW — W, = wp L. See Appendix B for details.

As an observation, see that if 5 = 0, the bound reducesto 0 <
e < 2/||xk||?. If this is included in the update (9), we obtain
normalized LMS (NLMS) algorithm [1]. We will now derive the
necessary conditions on the step size to ensure convergence in
the noisy case when § = —1/2.

Theorem 4. In the noisy case, the EWC-LMS rule with 8 =
—1/2, which is g1ven in (9), converges to the solution given by
W, = (R = 8/2)"1(P — Q/2) in the mean if the step size
satisfies the following inequality:

s i~ 055)

E|jénks, — 0.5¢5%5]2

0<m < (12)

Proof: As before, let the error vector be given by &, =
W, —Wy. Error vector dynamics are then given by the difference
equation ||6k+1||2 = [|éx]f? — 2misign(é] + Bér)eT (eus +
Berxy) +n2|lénxr + f3éxX||?. Taking the expectations on both
sides and letting E|éx41|? < E|éx||?, we immediately see that
the upper bound on the positive step size 7, > 0 is

Blel (e + B )|
E||énks, + Bérxi|?

M < 2 (13)
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Using Jensen’s inequality for convex functions E|X| >
|E(X)|, we can deduce a loose upper bound for the step size as

‘E |:Ek eLXp + [)’ekxk)] ’
E||ekxk + ,[3€ka||2

e <2 (14)

Since the lag L is chosen to be longer than the filter length,
ie., L > n, and owing to the fact that the input noise vector
v is white, we have E[vyv{ ;| = E[vp_rv}] = 0 and
E[vivF] = V, which is a nonzero matrix. We can then fur-
ther simplify E[e} ¢,x] and E[F éxx] to yield

15)

E [éfékfck} =K (ei) — W*TVWk + ngwk

E [sfekxk} = E(¢2) — 2w Vwy + 2w] Vwy. (16)

Substituting (15) and (16) in the numerator of (14) and using
the fact that E(e? — 0.5¢2) = E(erer_r) = E(&2 — 0.5¢,).
all the terms with the error vector &;, vanish, and we obtain the
bound in (12). Observe that this upper bound can be easily com-
puted without any knowledge of the optimal weight vector w.
This was possible only because we chose § = —1/2, which
helped remove the quadratic products w2 Vwy, wl Vwy,. For
any other nonzero value of [, it is impossible to estimate an
upper bound on the step size that is computable without the
knowledge of the noise variances or w,. This again validates
our claim that 3 = —1/2 removes the bias in the weights. Thus,
if the step size satisfies the upper bound, the mean error vector
norm decays asymptotically to zero (stable stationary point),
and hence, the EWC-LMS rule with 3 = —1/2 converges to
its stationary point, i.e., limg_, oo Wi — W, = Wr. O
In the next theorem, we will show that the asymptotic excess
error correlation at lags L > n is always bounded from above
and can be arbitrarily reduced by controlling the step size.
Theorem 5: With 3 = —1/2, the steady-state excess error
autocorrelation at lag L > n, i.e., |ps(L)| is always bound by

[Tr(R) + 030 [E (e5(K)) + o + [[WllZor]
(17)

where R = E[x;x}], and Tr(-) denotes the matrix trace.
The term E(e2(k)) denotes the excess MSE, which is (wWa, —
wr)TR(W. — wr). The noise variances in the input and de-
sired signals are represented by o2 and o2, respectively. Note
that the term ||w]|%, is always bound because of the step-size
bound.

Proof: We will start from the equation describing the dy-
namics of the error vector norm given below.

~ o . ~ 22\ AT/ A & a2
l€ksall® = llewll® — 2nsign (e + By ) &f (e + Béxks)
+0?|lenkn + Bérxrl® (18)

where we have assumed a constant step-size that satisfies the
upper bound in (12). Letting E||éx11||? = E|jéx||? as k — oo,
we see that

19)
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Once again, we use Jensen’s inequality to reduce (19), further
yielding
S Ellewske + Béinll® 2 |B (6] (exkic + Biia)] | 20)
The noisy error term is given by éx = eq(k) + ur — wl vy,
where the excess error e, (k) = €7 x;. Using the expressions in
(15), (16) and B = —0.5, we can immediately recognize that
the RHS of (20) is simply the steady-state excess error autocor-
relation at lag L > n, i.e., |pz(L)|. In order to evaluate the LHS
of (20), we will assume that the terms that ||Xx||? and né; are
uncorrelated in the steady state. This assumption (more relaxed
than the independence assumptions) has been used in the com-
putation of the steady-state excess MSE for the stochastic LMS
algorithm [17] and is more realistic for long filters. Using this,
we get
gEHékfck — 0.5¢%]2 = gE (62) [Tr(R) + 021 (21)
where E(é3) = E(e2(k)) + o2 +||w||%, 2. Using (21) in (20),
we get the inequality in (17). O
As a special case, consider L = 0 and the noise-free input.
Then, (17) is true with the equality sign, and |ps(L)| will be
the same as E(eZ(k)), which is nothing but the excess MSE (as
k — o0) of the LMS algorithm. In other words, (17) reduces to

= I1e(R) [E (2(R)) + 02] (22)

2
from which the excess MSE for the LMS algorithm [2] can be
deduced as

2
_ noTr(R) 23)

2 —nTr(R)
which will become 7no2Tr(R.)/2 for very small step sizes. If
the adaptive filter is long enough, the excess error ¢, (k) will
be Gaussian, and we can easily show that the excess MSE is
bounded by Tr(R)E[||eo||?]/4, where &q denotes the error due
to the initial condition [17].

Other Versions of Stochastic EWC-LMS: 1t is easy to see that
for mean convergence, the condition is |I — nAx (R + 8S)| <
1 for all k, where A\(R + (S) denotes the kth eigenvalue of
the matrix (R + (S). This gives an upper bound on the step
size as 1] < 2/]Amax(R + ﬂS |. From the trlangle 1nequa11ty
(11, [IR]2 + [B][IS]l2 < v/ Amax(R) + [B]v/ Amax(S), where
|| - |2 denotes the matrix norm. S1nce both R and S are posmve-
definite matrices, we can write

IRll2 +[A[IS[l2 < v/Tr(R) + |8]V/Tr(S)
< VE|x]? + 18]V El[ %]l
In a stochastic framework, we can include this in the update

equation in (9) to give us a step-size normalized EWC-LMS
update rule given by

(24)

. R 22 o 42
nsign (e% + [)’ek) (érXk + Berxy)
(1%l + 181]1%x]1)2

Wiyl = W + (25)
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Note that when 8 = 0, (25) reduces to the well-known NLMS
algorithm [2]. Alternatively, we can normalize by the norm
squared of the gradient, and this gives the following modified
update rule:

N A2 n A a0
(ei + ﬂek) (erXk + Bexxy)
(lexkn + Bérxi|2 +6)

(26)

Wil = Wi + 2

The term 6, which is a small positive constant, compensates
for the numerical instabilities when the signal has zero power
or when the error goes to zero, which can happen in the noise-
less case, even with finite number of samples. Once again, we
would like to state that with 4 = 0, (26) defaults to the NLMS
algorithm. However, the caveat is that both (25) and (26) do not
satisfy the principle of minimum disturbance, unlike the NLMS
[2]. Nevertheless, the algorithms in (25) and (26) can be used
to provide faster convergence at the expense of increased mis-
adjustment (in the error correlation sense) in the final solution.
A formal proof of this assertion is omitted here for the sake of
space and clarity.

The stochastic EWC algorithms have linear complexity, but
like any gradient method, these algorithms suffer from misad-
justment when the step size does not asymptotically decay to
zero. In addition, the step size plays an important role affecting
both the speed of convergence and the accuracy of the asymp-
totic solution. The algorithm presented in the next section at-
tempts to overcome some limitations of the gradient methods.

V. RECURSIVE ERROR WHITENING (REW) ALGORITHM

In this section, we will derive a quasi-Newton type algorithm
to estimate the optimal EWC solution. This is truly a fixed-point
algorithm that tracks the asymptotic solution in (5) and exhibits
faster convergence to the same when compared with the sto-
chastic gradient versions discussed before. The price paid for
fast convergence is increased complexity. The complexity of
REW is O(n?) (which is the same as RLS) compared with O(n)
of EWC-LMS.

For the sake of simplicity, assume noise-free data, and con-
sider the optimal solution in (5). Let Z = Ry + (S and
0;. = P + 5Qy. The following recursion can be derived using
the sample estimates for the correlation matrices:

Zi = Zi—1+ (208%1 — Bxp—p) X}, +Xi(x— Bxp—r)T. (27)
Recall the Sherman—Morrison—Woodbury identity, which is also
known as the matrix inversion lemma [10].
(A+BCDY)"'= At - A'B(C™"

+DTAT'B) 'DTA. (28)
In (28), we define A = Z;, B = [20%x), — fxp—1. xi],C =
I>xo2, a 2 X 2 identity matrix, and D = [x;.  (xx — OXk—1)]-
With these definitions, we can obtain the inverse of Z;, as
-1 -1 -1
2, =2y~ 7%,

B (Lx» +D7Z, ! B) ' D77},

(29)
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TABLE 1
SUMMARY OF THE REW ALGORITHM

Initialize Z™'(0) =cl, cisa large positive constant
w(0)=0
At every iteration, compute
B =[(2px(n) - x(n-L)) x(n)]and D =[x(n) (x(n) - Px(n-L))]
k() =Z" (1-1)B(,., +D'Z" (1 -1)B)'
y(n)=x"(mwm-1) and y(n-L) =x" (n- L)w(n-1)
o) =[ d(n) - y(n) ]=[ e(n)
d(n) - y(n) - Bd(n = L) = y(1~ 1) |~ |e(n) - Pe(n~ L)
w(n) = wn-1)+x(n)e(n)
Z7'(n)=Z"'(n-1)-k@D"Z ' (n-1)

Notice that this recursion for the inverse of Z; is different
from the conventional RLS algorithm. It requires the in-
version of a 2x 2 matrix (owing to the rank-2 update)
(Ioxo + DTZ;_llB)*l, which is still trivial. The recursive
estimator for @}, is much simpler.

0 =01+ [(1+28)dpxi, — Bdpxp—1 — Bdr—rxi]. (30)

Using (29) and (30), the optimal weight vector can be estimated
as

wi = Z; 0. (31)
The above expression can be further simplified as outlined in
[24]. A summary of REW is given in Table I. The derivation
above assumes stationary signals. For nonstationary signals, a
forgetting factor is required for tracking [1]. Inclusion of this
factor in the derivation is trivial and is left out in this paper.

1) Relationship With 1V Method: The REW algorithm is
similar to the IV method, which was proposed as an extension
to Least Squares regression [15] and can be used to estimate
the parameters in white noise once the model order is known.
The fundamental principle is to choose delayed regression
vectors known as instruments that are uncorrelated with the
additive white noise. Mathematically speaking, the IV method
computes the solution w = E[XzXi_A] ' F[X_adi]. On
the other hand, the REW solution is given by w,, = RzlP L-
Notice that in REW solution, the matrix Ry, is symmetric and
Toeplitz, which is very desirable, and we exploit this fact to
derive an elegant minor components based algorithm in the next
subsection. Thus, in effect, the IV method can be considered to
be a special case of the REW algorithm by removing the sym-
metric terms in Rz, and P 1. We will compare the performances
of REW and IV methods later in this paper.

2) REW With TLS Framework: In the beginning of this
paper, we mentioned that the TLS method can be used for
parameter estimation when the observations are corrupted with
additive white noise. However, TLS poses an inherent restriction
in that the variances of the disturbances must be equal. Some
extensions of TLS allow the variances to be different, but they
require the knowledge of the ratio of the variances [22]. In this
subsection, we will demonstrate how EWC can be reformulated
using the TLS principles. Basically, TLS solves an overde-
termined set of linear equations of the form Ax = b, where
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A € R™X"™ s the data matrix, b € R™ is the desired vector,
x € R™ is the parameter vector, and m denotes the number
of different observation vectors each of dimension n [18].
Alternatively, the linear equations can be written in the form
[A;b][xT; — 1] = 0, where [A; b] denotes an augmented data
matrix. Let S be the SVD of the augmented data matrix [A; b]
such that S = UX VT, where UTU = 1,,,, VI'V = I, 1, and
Y = [diag(01,02,03,04, ..., 0n41); O(m—n—1xn+1)] With all
singular values o;, > 0. If [A;b][xT; —1] = 0, the smallest
singular value must be zero. This is possible only if [xT — 1] is
a singular vector of [A; b] (corresponding to the zero singular
value) normalized such that its (n + 1)th element value is —1.
Instead of computing the smallest singular value of [A; b], we
can compute the minor eigenvector of the equivalent square
matrix that reduces the analytical TLS solution to

[X; - 1] = _Vn+1/vn+1,n+1 (32)

where v, 11,41 is the last element of the minor eigenvector
vn+1- The TLS technique can be easily applied to estimate the
optimal MSE solution using fast minor components estimation
algorithms [11], [19]. In the case of EWC, it is easy to show that
the equivalent square matrix of [A; b] is

LA

PT  2p4(L) 33)

The term p4(L) in (33) denotes the autocorrelation of the de-
sired signal at lag L. It is important to note that the matrix (33) is
square symmetric due to the symmetry of R . Hence, the eigen-
vectors of G are all real which is highly desirable. In addition, it
is important to note the fact that (33) still holds even with noisy
data as the entries of G are unaffected by the noise terms. In the
infinite-sample case, the matrix G is not full rank, and we can
immediately see that one of the eigenvalues of (33) is zero. In
the finite-sample case, the goal would be to find the eigenvector
corresponding to the minimum absolute eigenvalue (finite sam-
ples also imply that G ~! exists). Since the eigenvalues of G can
be both positive and negative, a typical iterative gradient or even
some fixed-point type algorithms tend to become unstable [11].
A workaround would be to use the matrix G2 instead of G.. This
will obviate the problem of having mixed eigenvalues while still
preserving the eigenvectors. The squaring operation is good if
the eigenvalues of G are well separated. Otherwise, the smaller
eigenvalues blend together, making the estimation of the minor
component of G2 more difficult. In addition, the squaring oper-
ation creates additional overhead, thereby negating any compu-
tational benefits offered by the fixed point type solutions as in
[11]. Therefore, we propose to use the inverse iteration method
to estimate the minor eigenvector of G [10]. If w;, € R™*! de-
notes the estimate of the minor eigenvector corresponding to the
smallest absolute eigenvalue at time instant k, then the estimate
at the (k + 1)th instant is given by

-1
Wk41 = Gk+1Wk
Wk+1

—H (34)
[ whpal

Wil =

The term G41 denotes the estimate of the augmented data ma-
trix G [in (33)] at the (k + 1)th instant. It is easy to see that
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Fig.2. Contour plot of the EWC performance surface (2-D) (top) with weight

tracks and (bottom) steady-state weight tracks for the EWC-LMS algorithm.

G, can be recursively estimated as G, = Gp—1 + @bkkaL +
Yr—rbF, where 1, = [xy;dg] is the concatenated vector of
the input and desired response. Now, we can invoke the inver-
sion lemma as before and obtain a recursive O(n?) estimate for
matrix inversion in (34). The details of this derivation are trivial
and are omitted here. Once the minor component estimate con-
verges, i.e., w; — v, the EWC-TLS solution is simply given by
(32). Thus, the overall complexity of the EWC-TLS algorithm
is still O(n?), which is the same as the REW algorithm. How-
ever, we have observed through simulations that the EWC-TLS
method converges faster than the EWC-REW while preserving
the accuracy of the parameter estimates.

VI. SIMULATION RESULTS AND DISCUSSION

1) Weight Tracks and Convergence of EWC-LMS: First, we
will experimentally verify the convergence of EWC-LMS. For
this experiment, we consider a two-tap filter with data corrupted
by additive white noise. The SNR of the input signal is 10 dB,
and the desired output is noise-free (since input noise is what
causes bias in MSE). The top of Fig. 2 shows the contour plot of
the EWC surface. Obviously, the stationary point is a saddle; in
addition, the optimal solution is wz = [—0.2 0.5]. A constant
step size of 0.001 is used for EWC-LMS with 8 = —1/2. The
weight tracks on the contour plot clearly show convergence to
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Fig. 3. (Top) EWC performance surface (in 2-D). (Bottom) Weight tracks
overlaid on the contours of EWC performance surface.

the saddle point, and the same behavior can be observed for dif-
ferent initial conditions. The final misadjustment can be easily
controlled by the step-size similar to the LMS algorithm. The
bottom of Fig. 2 shows the weights versus iterations. In order
to stress the importance of the sign information for convergence
to the saddle point, we performed another experiment with the
same setup, this time using noise-free input and desired signals
and removing the sign term from EWC-LMS. The top of Fig. 3
shows the noise-free EWC surface, and the bottom of Fig. 3
shows the weight tracks on the contours. Clearly, the weights
do not converge to the desired saddle point, even in the absence
of noise. On the other hand, using the sign information leads the
weights to the saddle point in a stable manner. In the noise-free
case, the misadjustment becomes zero.

2) Estimation of System Parameters in White Noise Using
EWC-LMS: A noise-free colored input signal of 50000 sam-
ples is passed through an unknown system to form the noise-free
desired signal. An uncorrelated purely white noise of length
50000 samples is added to the input signal for training. The de-
sired training output is left noise-free since this is not critical to
the performance when it is uncorrelated with the other signals.
We varied the input SNR in the range [—10 dB, 10 dB]. The
number of unknown and adaptive filter coefficients was varied
from 4 to 12, and we performed 100 Monte Carlo runs calcu-
lating the error vector norm for each case using

error norm = 20 log 10[||wr — w.|] (35)
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Fig. 4. Histogram plots showing the error vector norm for EWC-LMS, LMS algorithms and the numerical TLS solution.

where w, is the solution given by EWC-LMS after one com-
plete presentation of the training data, and w is the true weight
vector. It is possible to use other statistical measures instead of
the error norm, but the performance measure in (35) is sufficient
to demonstrate the bias removal ability of EWC-LMS. For com-
parison purposes, we computed the solutions with LMS as well
as the numerical TLS (regular TLS) methods. A time varying
step size was chosen for EWC-LMS satisfying the bounds de-
rived in the previous sections. For LMS, the step-size that gave
the least error norm in each trial was used. The histograms of the
error norms are shown in Fig. 4. The inset plots in Fig. 4 show
the summary of the histograms for each method. EWC-LMS
performs significantly better than LMS at low SNR values (—10
and 0 dB), while performing equally well for 10-dB SNR. The
input noise variances for —10, 0, and 10 dB SNR values are 10,
1, and 0.1, respectively. Thus, we expect (and observe) TLS re-
sults to be worst for —10 dB and best for 10 dB. As per theory,
we observe that TLS performance drops when the noise vari-
ances are not the same in the input and desired signals.

3) Estimation of System Parameters in White Noise Using
REW: In order to show the performance of the EWC-REW

algorithm, we will use the same experimental setup as in the
EWC-LMS case. The input noise SNR was again varied be-
tween —10, 0, and 10 dB, and we estimate the performance with
different lengths of the unknown filter viz., 4, 8, and 12 taps. For
every combination of SNR and filter length, 100 Monte Carlo
runs were performed, and the error vector norms defined in (35)
are computed. For comparison purposes, RLS and numerical
TLS solutions are also evaluated. The inset plots in each sub-
figure of Fig. 5 summarize the mean and the spread of the error
norms for all the three algorithms, whereas the error norm his-
tograms are also provided. Clearly, REW outperforms RLS for
low SNR values, and their performances become similar as SNR
increases. In fact, RLS yields a useless w = 0 (zero weight
vector) when the SNR is lower than —10 dB. Again, TLS per-
forms well only for similar input and output noise variances.
4) Performance Comparisons Between REW, EWC-TLS, and
IV Methods: In this example, we will contrast the performances
of the REW, EWC-TLS, and the IV method in a 4-tap system
identification problem with noisy data. The input signal is col-
ored and corrupted with white noise (input SNR was set at 5 dB),
and the desired signal SNR is 10 dB. For the IV method, we
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to quantify the effects of conditioning and symmetric Toeplitz
structure of Ry In Fig. 7, we show the angle between the esti-
mated minor eigenvector and the true eigenvector of the aug-
mented data matrix G for a random single trial in scenarios
with and without noise. Notice that the rates of convergence are
very different. It is well known that the rate of convergence for
inverse iteration method is given by the ratio |\;/A2|, where

Error norm in dB

Fig. 6. Histogram plots showing the error vector norms.

|A1|~! is the largest eigenvalue of G —1, and | A2~ is the second
largest eigenvalue of G~! [10]. Faster convergence can be seen
in the noiseless case owing to the huge |A; /2| ratio.



1066

Convergence of the minor eigenvector of G with noisy data
90 T T T T T T T T T

80 B
70 E
60 E
3
[
> 50 E
@
-
€
@ 40 4
f=24
b3
o
30 .
20 i
10 E
D 1
0 05 1 15 2 25 3 35 4 45 5
iterations X 104
@
Convergence of the minor eigenvector of G with clean data
70 :
60 E
50 1
Pl
@
o
g 40 E
-
£
2
> 301 E
&
20¢r :
10 h g
0 n WL . .
0 50 100 150 200
iterations
®)
Fig. 7. Convergence of the minor eigenvector of G with (a) noisy data and

(b) clean data.

5) Effects of Under Modeling: Estimating the model order
of an unknown system is a nontrivial problem that has not had a
satisfactory solution until now. In the EWC discussions and sim-
ulations, we always assumed prior information about the model
order. In this section, we will briefly explore the effects of un-
dermodeling and contrast the performance of the EWC with
MSE. Theoretically speaking, in order to get an unbiased pa-
rameter estimate, we require the estimated filter to be equal to
or longer than the unknown system. In the case of undermod-
eling, it would not be useful to compare the estimated model
with the true model. However, depending on the criterion used,
the parameters estimated will represent the true system in some
fashion. Let us first look at what the MSE criterion would do in
the case of undermodeling with and without noise in the input
data. Consider noise-free input case. If we train adaptive sys-
tems with MSE, the model-mismatch error monotonically re-
duces to zero as we approach the true model order. At the same
time, the output MSE will monotonically reduce as the filter
order is increased. However, there is no one-to-one correspon-
dence (weight matching) between the estimated model and the
true system. Exact weight matching will only happen when the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 3, MARCH 2005

input signals are white, which is neither interesting nor prac-
tical. Another fact is that the error signal with undermodeling
will be uncorrelated with the input only at the lags smaller than
the filter length. When the filter length is increased beyond the
true system (exact or overestimation), the error becomes uncor-
related with input for all lags. Now, consider the case with noisy
inputs. We know that the solution given by MSE is biased. This
means that increasing the filter order will not reduce the effect
of the bias. A more serious limitation of the MSE is that the
solution changes with varying input noise variance. Thus, the
monotonic reduction in the model mismatch is no longer true,
even though the MSE decreases with increasing filter lengths.
The decorrelation property of the MSE will also not hold for
lags greater than the adaptive filter length (it is well known that
decorrelation property is true for all lags only when the error is
white).

Now, consider EWC adaptation in the undermodeling sce-
nario. Again, the noise-free case is treated first. EWC tries to
find the solution that gives zero error correlation at the specified
lag. As in the case of MSE, there is no exact matching between
the actual system and the estimated model. In the noisy case,
EWC will still try to decorrelate the error at a specific lag. How-
ever, the error correlations at higher lags are nonzero. When the
length of the filter is increased, the values of the error correla-
tions at the higher lags decay down to zero, and the model mis-
match decreases. This is a very interesting property that can be
exploited to determine the correct model order of an unknown
system. In the discussion on the properties of EWC, we men-
tioned the fact that EWC tries to orthogonalize the error with
the lagged input, i.e., FlexXp—r + ex—rXx] = 0. In an un-
dermodeling scenario, this orthogonalization will be true only
for the specified lag (similar to MSE). As the filter order is in-
creased, EWC will make the error orthogonal to the input at all
lags greater than the chosen lag L. This is again another prop-
erty of EWC, which is not matched by MSE. Thus, we conclude
that some of the nice properties of MSE are carried over by EWC
(in a slightly different framework), even in the presence of input
noise.

We performed some undermodeling experiments to verify the
claims made in this section. Figs. 8(a) and (b) show the averaged
weight error norms of MSE and EWC with input SNR values at
5 and 0 dB, respectively. The unknown system has four taps,
and we can clearly see that both EWC and MSE solutions are
biased when the number of filter taps is less than four. For four or
more taps, EWC produces a much better estimate than the MSE
(the minor variations in the error norms are because of different
input/output pairs used in the Monte Carlo trials), whereas the
performance of MSE does not improve by increasing the order
(unlike the noiseless case). Consider another example of an un-
known system with six taps, and the problem is to estimate a
2-tap model for this system. The input SNR is fixed at O dB.
The top of Fig. 9 shows a plot of the crosscorrelation between
input and the error. Note that the crosscorrelation is zero for
only two lags in the case of MSE, and with EWC, the error and
the input are orthogonal only at the specified lag L = 5 (arbi-
trarily chosen) in this example. The bottom of Fig. 9 shows the
same plot in an overestimation scenario. The key observation is
that with the MSE criterion, the error is uncorrelated with the
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input only for a few lags, whereas in the case of EWC, error and
the input are uncorrelated for all lags greater than filter length.
Fig. 10 shows the normalized error autocorrelation at higher lags
in the overestimation case for both EWC and MSE. Notice that
the error autocorrelations for EWC are very small for higher
lags.

VII. CONCLUSION

MSE has been the popular criterion for adaptation owing to
the efficient recursive and stochastic algorithms that work on
individual samples. A serious drawback of MSE is its biased
parameter estimate when the signals are corrupted with additive
white noise (AWN). Several signal processing solutions exist to
enhance the solution, including Total Least-Squares (TLS), that
nullifies the bias if the input and output signals have equal noise
variances or the extended TLS that requires the knowledge of
the ratio of the noise variances. Here, we proposed a new crite-
rion called the Error Whitening Criterion (EWC) that provides
unbiased parameter estimates in the presence of arbitrary power
AWN in both input and desired signals of interest. The theo-
retical foundations of EWC were laid out, and some interesting
properties of the EWC cost function were explored.
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We also proposed an online stochastic gradient algorithm
called EWC-LMS, which is O(n) in complexity and proved
that the algorithm converges to the optimal EWC solution under
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some constraints on the adaptation step size. We also showed
that the steady-state excess error correlation was always bound
from above by a positive quantity that can be made arbitrarily
small by controlling the step size. The MSE criterion turns out
to be a special case of the EWC, and therefore, the Least Mean
Squares (LMS) algorithm is a special case of EWC-LMS. The
convergence conditions and upper bounds on the excess MSE
for LMS can, hence, be easily deduced from the corresponding
EWC equations. We then designed a quasi-Newton type rule
Recursive Error Whitening (REW) algorithm that converges
to the optimal solution and tracks it at every iteration similar
to the Recursive Least Squares (RLS). The complexity of this
algorithm is O(n?), which is similar to that of the RLS updates.
We explored the similarities between the REW algorithm and
the Instrumental Variables (IV) method, which has been used
for parameter estimation in white noise. The REW algorithm
has better structure than the recursive IV method and allows
the derivation of a fast minor components based EWC-TLS al-
gorithm. The EWC-TLS algorithm adopts the inverse iteration
method for estimating the minor component.

Extensive simulations showed the superiority of the EWC
methods over the MSE equivalents. We have also successfully
applied EWC in an inverse modeling problem and controller de-
sign [24]. One of the limitations of the EWC is the assumption
that the noise must be white. This can be restrictive in certain
applications, and we are working on modifications to EWC to
handle colored noise. The initial results have so far been very
promising [25]. Another aspect is to generalize the application
of EWC to the identification of nonlinear systems. This is a
very challenging problem that has not received much attention
in signal processing research. Future work will also be directed
toward designing hypothesis testing methods that monitor the
error autocorrelations at higher lags to make decisions about the
true model order.

APPENDIX A

Recall that the optimal solution of EWC satisfies

El(1+2B8)erxi — Blerxi—r + exXpyr)] =0. (A1)
Rearranging the terms in (A.1), we obtain
E[ek(xk — /B(Xk+L — 2x5 + Xk—L))] =0. (A.2)

Notice that (x4, — 2xy, + Xj_ 1) forms an estimate of the ac-
celeration of the input vector xg. Specifically for § = —1/2,
the term that multiplies e, becomes a single-step prediction for
the input vector x;, (assuming zero velocity and constant accel-
eration), according to Newtonian mechanics. Thus, the optimal
solution of EWC tries to decorrelate the error signal from the
predicted next input vector.

APPENDIX B

The dynamics of the error vector norm is given by

lers1ll* = llexll* — 2nsign(ef + BeE) ef, (exxs + Bérxr)
+n?llexxs + Bérkil|”. (B.1)
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Further, since €7 xj, = e, and €1 X), = ¢, we have

lex+1ll® = llewll® = 20 |e; + Bér| + n°llexxk + Bénki|*.
(B.2)
Let

llerxr + Bérx||?
ez + Bé|

p=2-n (B.3)

If the step-size (positive) upper bound in (10) is satisfied, then
@ > 0 for all k. Therefore, (B.3) reduces to the inequality

lerr1l® < llerll* = ne |ex + Bei| - B4

Iterating (B.4) from k = 0, we get |ex]|> < |leol]® —

no Yor_ €2 4+ Bé2|. In the limit k — oo, it is easy to see
that |lec||? + ©nd ooy l€f + BeF| < |leo||?, which implies
limy o0 |€? + B¢2] = 0 as the summation in the error terms
must converge to a finite value given by ||eo]|?> — ||€xo||?. The
instantaneous cost |e? + 3¢Z| becomes zero only when the
weights converge to the true weights wr(.". |lex||*> = 0). In
addition, note that the gradient becomes zero at this point.
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