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Abstract

Phased-array magnetic resonance imaging technology is currently 8ourishing with the promise of obtaining a pro9table
trade-o6 between image quality and image acquisition speed. The image quality is generally measured in terms of the
signal-to-noise ratio (SNR), which is often calculated using samples taken from the reconstructed image. In this paper, we
derive analytical expressions for the asymptotic SNR in the 9nal image for three di6erent phased-array image combination
methods, namely: (1) sum-of-squares, (2) singular value decomposition, and (3) normalized coil averaging. The SNR
expressions are expressed in terms of the statistics of the noise in the measurements, as well as the coil sensitivity coe=cients.
Our results can facilitate a better understanding for the phased-array image combination problem, as well as provide a tool
for the optimal design of coils.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) as a noninva-
sive diagnostic tool has proven to be particularly valu-
able for the examination of the soft tissues in the body
(such as the brain), and it has become an instrumen-
tal tool for the diagnosis of stroke and other signi9-
cant diseases. MRI is also useful for pinpointing the
focus of diseases such as epilepsy. Conventionally,
MRI has been primarily used for imaging of static sce-
narios, but recently it has also been used with great
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success for imaging of time-varying processes. An im-
portant application of dynamic MRI is imaging of the
heart and monitoring of cardiac diseases [8]; yet an-
other example is functional MRI (fMRI), where the
time variation of certain chemical compositions in the
brain is investigated when a patient is subjected to an
external stimulus. In these applications, the image ac-
quisition speed is a critical, limiting factor.
Phased-array MRI involves a strong magnet and

a number of radio antennas (coils) [1,2,5,7,9,10,12].
The main bene9t of using a phased array is that by
appropriately combining the signals from the dif-
ferent coils, the signal-to-noise ratio (SNR) can be
improved, which gives an increase in image quality.
Furthermore, since SNR can be traded for image
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acquisition speed, and increase in SNR leads to in-
creased cost-e6ectiveness, reduced problems with
motion artifacts, and decreased discomfort (such as
long breath-holding durations) for patients.
In MRI, the image quality is typically evaluated us-

ing the SNR [3]. It is commonly accepted that gains
in SNR above 20 dB are clinically not signi9cant for
static imaging, due to the limitations of the human vi-
sual perception. However, from the perspective of de-
veloping fast MR imaging technology, any improve-
ment in SNR can be translated into a signi9cant gain
in imaging speed.
A di=culty associated with the evaluation of im-

age reconstruction algorithm performance is that in
general, it is often di=cult to derive exact analyti-
cal expressions for the SNR associated with a given
reconstruction algorithm, such as the popularly used
sum-of-squares (SoS) method [2,10]. Recently, we
have proposed two alternative image reconstruction
algorithms [13], called the singular value decompo-
sition(SVD) method, and the normalized coil aver-
age (NCA) method, which are based on the principle
of maximum ratio combining—a technique approach
borrowed from optimal array signal processing [11].
These reconstruction algorithms can be understood
in an optimal second-order statistical framework (re-
call that mean-square-error (MSE) or SNR are both
second-order statistical measures).
In this paper, we derive asymptotic expressions for

the SNR in the reconstructed image when these three
(SoS, SVD, and NCA) techniques are employed. The
derived expressions are accurate for low noise coil
measurement situations (i.e., when the SNR is high);
nevertheless, they still can provide an insight into the
low-SNR behavior of these algorithms. The presented
analytical SNR expressions can be useful to design
better phased array con9gurations, building strategies
for the optimal usage of acquired coil measurements
to determine the desired trade-o6 between speed and
quality, and to establish an understanding for how
model parameters in8uence the quality of the 9nal
reconstructed image.

2. Signal model

Consider an M -pixel image. Let � = [�m] be a
complex-valued M -vector (of which each entry is

called a pixel) consisting of the MR contrasts. In
general, the coil sensitivity also exhibits spatial vari-
ation; therefore let the M ×C complex-valued matrix
C = [cmk ] consist of coil sensitivity values, whose
(m; k)th entry is the sensitivity of coil k at pixel m.
In general, if S= [smk ] denotes the measurement ma-
trix, the measurement of coil k for pixel m is given
by [4]

smk = �mc∗mk + 	nmk ; (1)

where ∗ denotes the complex conjugate, N = [nmk ]
is a complex-valued measurement noise matrix. The
rows of N are usually assumed to be independent,
but its columns are correlated with covariance matrix
Q = [qmk ]; i.e., letting 
mn to be the Kronecker-delta
function, E[nHmk nnl] = qkl · 
mn, where H stands for
conjugate-transpose. This assumption is based on
the rationale that the measurement noise at a cer-
tain pixel is usually correlated across di6erent coils,
but the noise is spatially white (if this is not the
case, a spatial whitening procedure can be applied as
pre-processing). It is also common to assume that the
noise distribution is Gaussian [4]. In (1), we have in-
troduced the parameter 	 to allow manipulation of the
noise-power without changing the shape of the noise
probability distribution. In addition, we make the fol-
lowing assumptions on the second-order statistics of
the complex-valued measurement noise: the real and
imaginary parts:

(A1) are uncorrelated, and
(A2) have identical covariance.

These assumptions are common in signal processing
due to the fact that complex noise usually emanates
from a complex baseband representation of stationary
narrowband noise. Combined with E[nHmknnl]=qkl·
mn,
A1 and A2 lead to the following second-order noise
statistics for pixel m:

E
[
Re
{
nHmk
}
Re {nml}

]
= E

[
Im
{
nHmk
}
Im {nml}

]
=
qkl
2
;

E
[
Re
{
nHmk
}
Im {nml}

]
= E

[
Im
{
nHmk
}
Re {nml}

]
= 0: (2)
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3. Maximum ratio combining

For complex-valued signals, assuming that the coil
sensitivities are known, the SNR-optimal unbiased lin-
ear combination of the measurements for themth pixel
is given by the matched 9lter:

�̂m =
sTmcm
cHmcm

; (3)

where T denotes transpose and the vectors sm and cm
denote vectors of coil measurement and sensitivities
for pixel m. The SNR-optimality of this reconstruc-
tion method among all linear combiners is proved
by a straightforward application of the Cauchy–
Schwartz inequality [6]. The corresponding SNR is
|�m|2‖cm‖4=(	2cHmQcm), where ‖:‖� denotes the L�
vector norm, ‖:‖ denotes the L2 norm, and |:| denotes
complex magnitude. In practice, since the coil sensi-
tivities are not known, this approach cannot be used.

4. Sum-of-squares reconstruction

A standard method for combining measurements
acquired by multiple coils is sum-of-squares (SoS)
reconstruction [10,11]. This commonly used method
is a special case of a more general sum-of-powers
approach, which we call the �-power reconstruction
(So�). With So�-reconstruction, the pixel m is given
by

�̂m =

(
C∑
k=1

|smk |�
)1=�

= ||sm||� : (4)

For SoS, � is equal to two. In the noise-free case,
we have 	 = 0, and the estimator in (4) yields the
following pixel value:

�̂m(0) = |�m| · ||cm||1=�� : (5)

For small noise power levels, the solution in (4) can
be accurately approximated by a 9rst-order Taylor
expansion:

�̂m (	) ≈ �̂m(0) + �̂′
m(0)	: (6)

This leads to the following asymptotic SNR expres-
sion:

SNRSo� =
E
[
|�̂m(0)|2

]
	2E

[∣∣�̂′
m(0)

∣∣2] : (7)

Assuming the pixel values and coil sensitivities are
unknown deterministic quantities (treating them as un-
correlated random variables leads to similar results,
where all deterministic quantities involving the image
and coil sensitivities become expectations instead),
from (5) we see that the numerator of (7) is given by

E
[
|�̂m(0)|2

]
= |�̂m|2 ‖cm‖2�: (8)

Under assumptions A1 and A2, the denominator of
(7) can also be found to be (see Appendix A)

E
[∣∣�̂′

m(0)
∣∣2]= ||cm||2(1−�)� · cHmQcmD2(�−2); (9)

where D=diag{|cm1|; : : : ; |cmC |}. Substituting (8) and
(9) in (7), we see that the asymptotic SNR of So� is

SNRSo� =
|�m|2‖cm‖2��

	2cHmQcmD2(�−2) : (10)

Speci9cally for SoS (�= 2), the SNR becomes

SNRSoS =
|�m|2‖cm‖42
	2cHmQcm

; (11)

which indicates that if the coils and their physical con-
9guration can be designed such that cHmQcm is small,
the SNR of the reconstructed image can be improved.
This can be achieved by forcing the vector cm to the
subspace spanned by the eigenvectors of Q corre-
sponding to the smaller eigenvalues. In practice, the
noise covariance matrix Q typically is a function of
the coil sensitivities or of the physical coil con9gu-
ration. Therefore, the problem then becomes optimiz-
ing cHmQ(cm)cm by adjusting coil the con9guration to
achieve maximum SNR.
Consider the special case when Q = I. Then

SNRSoS = |�m|2‖cm‖2=	2. This result was intuitively
expected, because the SNR increases linearly with
the signal power and it is inversely proportional to
the noise power. Also we know from statistical es-
timation theory that if C independent measurements
with identical variance are averaged, the estimation
variance decreases by a factor of ‖cm‖2, which is the
norm-square of the averaging weights—therefore the
SNR increases by this factor.

5. Singular value decomposition reconstruction

The traditional SoS method works on a pixel-by-
pixel basis, whereas in order to apply singular value
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decomposition (SVD) to acquire the image vector, an
additional assumption is required. In SVD reconstruc-
tion it is assumed that the coil sensitivity remains ap-
proximately constant over a small region of the image.
This is a reasonable assumption since the coil sensi-
tivity pro9les will vary smoothly over space, thus in
a small neighborhood Q, they can be assumed to be
constant. Under this assumption, the signal model for
the region Q becomes

S= �cH + 	N; (12)

where � is the P × 1 image vector consisting of the
pixel values in region �, c is the C×1 coil sensitivity
vector consisting of the sensitivities of the coils in the
phased array which are constant for all pixels in �.
The overall P×C measurement matrix for � is S, and
the matrix of measurement noise is 	N. We make the
same assumptions on the noise statistics as before, i.e.,
E[N]=0 and E[NHN]=Q. For the analysis of the SVD
method, assumptions A1 and A2 are not required.
The SVD reconstruction simply follows from the

fact that when the measurement is noise-free (i.e.,
	 = 0) the image vector for region � is the eigen-
vector of the matrix SSH =‖c‖2��H corresponding to
the nonzero eigenvalue. In the general noisy case, the
best image estimate is given by the minimizer of the
least-squares criterion ‖S − �cH‖2, which is equal to
the eigenvector of SSH corresponding to the largest
eigenvalue. We have previously demonstrated that in
real MRI data, the matrix S e6ectively has rank one in
the regions where the signal has su=cient power [13];
hence the assumptions underlying the SVD method
are valid. In the regions of the image dominated by
noise, the assumption breaks down; however, the re-
constructed image quality in these parts of the image
is not of large interest anyway.
In the noisy case, the largest eigenvector of SSH

will be perturbed from its noise-free value of �. When
evaluating the SNR in the reconstructed image, we
are interested in the power of the perturbation in this
eigenvector. The problem of determining this pertur-
bation power can be tackled more easily if we instead
consider the matrix SHS. In particular,

SHS=
(
�cH + 	N

)H (
�cH + 	N

)
= ‖�‖2ccH + 	NH�cH + 	c�HN + 	2NHN:

(13)

For 	=0, the nonzero eigenvalue of SHS is observed
to be �(0) = ‖�‖2‖c‖2. The 9rst- and second-order
derivatives of this eigenvalue evaluated at 	 = 0 are
(see Theorem 6.3.12, p. 372, of [6]):

�′(0) = 2Re{c�HNc}=‖c‖2;
�′′(0) = 2cHNHNc=‖c‖2: (14)

For small 	 the nonzero eigenvalue of SHS can be
approximated by

�(	) = �(0) + �′(0)	 + 1
2�

′′(0)	2

= ‖�‖2‖c‖2 + 2Re{�HNc}	
+cHNHNc	2=‖c‖2: (15)

Considering the image and coil sensitivity vectors
to be unknown deterministic (once again taking them
to be uncorrelated random vectors leads to similar re-
sults) and taking the expectation of (15) with respect
to N results in

E[�(	)] = ‖�‖2‖c‖2 + 2Re{�HE[N]c}	
+cHE[NHN]c	2=‖c‖2

= ‖�‖2‖c‖2 + cHQc	2=‖c‖2: (16)

We notice that the SNR in the reconstructed image is
given by the two terms in this expression. Speci9cally,
we can see that, for small noise, the SNR in the SVD
reconstructed image will be

SNRSVD =
‖�‖2‖c‖4
	2(cHQc)

: (17)

This SNR is identical to what was obtained for SoS.
If the noise covariance matrix is Q = I, the SNR in
(17) becomes ‖�‖2‖c‖2=	2, which is P times larger
than the result for SoS. This is so because the region �
covers P pixels and SNRSVD considers the total signal
power in �.

6. Normalized weighted coil average reconstruction

The applicability of the normalized coil average
(NCA) method relies on the same assumptions as the
SVD reconstruction technique. It is assumed that the
coil sensitivities remain constant in small neighbor-
hoods; therefore, the same signal model as in (12)
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holds. Speci9cally, for the kth coil the measurement
vector is

sk = c∗k�+ 	nk ; (18)

where sk and nk are the kth columns of S andN in (12).
The normalized weighted coil average reconstruction
is then [13]

�̂=
C∑
k=1

�k
sk

‖sk‖ = �TSB−1; (19)

where B = diag{‖s1‖; : : : ; ‖sC‖}. Notice that in the
noise-free case the estimate becomes

�̂(0) =
�

‖�‖c
HD−1�: (20)

If the linear combination weights are selected as � =
D−1c=C, the estimate will have unit norm (power).
The asymptotic SNR for this reconstruction method

can be obtained using the expansion �̂(	) ≈ �̂(0) +
�̂′(0)	. Speci9cally, the approximate SNR is given by

SNRNCA =
E
[‖�̂(0)‖2]

	2E
[‖�̂′(0)‖2] : (21)

Under the same assumptions as SoS (including A1
and A2), the numerator is determined to be

E
[‖�̂(0)‖2]= �HD−1ccHD−1� (22)

and the denominator (whose expression involves a po-
tentially confusing form in vector–matrix notation) is,
in scalar terms, calculated as (see Appendix B)

E
[‖�̂′(0)‖2]

=
C∑
k=1

C∑
l=1

qklRe{�∗
k �lckc

∗
l }Re{c∗k cl}

‖�‖2|ck |3|cl|3 : (23)

Substituting these results in (21) yields the SNR for
NCA. In particular, for the usual special case that are
considered in the previous sections, the SNR becomes

SNRNCA =
‖�‖2�HD−1ccHD−1�

	2�HD−1�
: (24)

We notice that, in (24), if the averaging weight vector
is selected to be �=Dc, then SNRNCA=‖�‖2‖c‖2=	2,
which is identical to that of SoS and SVD for this
situation. In practice, however, c is not known. In
such cases, where there is no a priori knowledge about

coil sensitivities, it is reasonable to use equal weights,
i.e., �k = 1=C. For this weight assignment, de9ning
d = diag(D−1} = [1=|c1|; : : : ; 1=|cC |]T, the SNR be-
comes ‖�‖2dTccHd=(dTd	2). In general, this SNR
can be expected to be smaller than that of SoS and
SVD methods, since determining the optimal com-
bination weights require the knowledge of the coil
sensitivities.

7. Discussion

Recent trends in MRI technology indicate the need
for fast and high-quality imaging techniques using
multiple coils. In this correspondence, we have inves-
tigated the asymptotic SNR performance of three im-
age combination methods for phased-array MRI. The
analytical SNR expressions provided here facilitate an
understanding for the design of optimal fast-imaging
algorithms that produce high-quality images. In ad-
dition, our analytical expressions lead to interesting
insights about the e6ect of system parameters, such
as coil sensitivities and noise statistics. Future work
may focus on optimizing phased-array con9gurations
to maximize the image quality.
An interesting observation that emerged from our

theoretical analysis of the di6erent image combination
methods is that asymptotically, the sum-of-squares
method becomes SNR-optimal, since its performance
converges to that of the maximum-ratio combining.
SVD method, on the other hand, is an SNR-optimal
method by de9nition, due to the fact that the SVD so-
lution naturally appears as a consequence of minimum
MSE estimation, and the SNR can be seen as the ratio
of the signal power to the error MSE.

Appendix A.

The explicit expression for the sensitivity of the
So� solution to the noise standard deviation is found
to be

�̂′
m = ‖sm‖1−��

(
C∑
k=1

|smk |�−2Re {n∗
mksmk}

)
: (A.1)
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Evaluated at 	 = 0, this becomes

�̂′
m(0) = |�m|−1‖cm‖1−��

×
(

C∑
k=1

|cmk |�−2Re {c∗mkn∗
mk�m}

)
: (A.2)

Finally, we calculate

E
[
|�̂′
m(0)|2

]
= E

[
|�m|−2 ‖cm‖2(1−�)�

×
(

C∑
k=1

C∑
l=1

|cmk |�−2 |cml|�−2

× Re {c∗mkn∗
mk�m} · Re {c∗mln∗

ml�m}
)]

=
qkl
2

‖cm‖2(1−�)�

(
C∑
k=1

C∑
l=1

|cmk |�−2

× |cml|�−2 Re {c∗mkcml}
)
; (A.3)

where we have utilized

E
[
Re {c∗mkn∗

mk�m} · Re {c∗mln∗
ml�m}]

=
qkl
2

|�m|2 Re {c∗mkcml} (A.4)

which is derived (Appendix C) using A1 and A2. Fi-
nally, when everything is collected into vector–matrix
form, (9) is obtained.

Appendix B.

In NCA, the sensitivity of the reconstructed image
with respect to the noise power parameter 	 can be
found as

�̂′(	) =
C∑
k=1

�k

(
nk

‖sk‖ − sk
(
nHk sk + s

H
k nk
)

2‖sk‖3
)
: (B.1)

Evaluated at 	 = 0 this becomes

�̂′(0) =
C∑
k=1

�k

×
(

nk
‖�‖|ck | − c∗k�

(
c∗k n

H
k �+ ck�

Hnk
)

2‖�‖3|ck |3
)
:

(B.2)

The norm of this vector, after some algebraic simpli-
9cations, is obtained as

‖�̂′(0)‖2 =
C∑
k=1

C∑
l=1

qklRe{�∗
k �l}

‖�‖2|ck | |cl|

− Re{�∗
k �lck�

Hnl}Re{c∗k nHk �}
‖�‖4|ck |3|cl|

− Re{�∗
k �lc

∗
l n

H
k �}Re{c∗l nHl �}

‖�‖4|ck | |cl|3

+
Re{�∗

k �lckc
∗
l }Re{c∗k nHk �}Re{c∗l nHl �}
‖�‖4|ck |3|cl|3 :

(B.3)

In order to 9nd the expected value of (B.3), we resort
to the derivation in Appendix C once again. This re-
sults in the following 9nal explicit expression for the
expected value of (B.3):

E
[‖�̂′(0)‖2]

=
C∑
k=1

C∑
l=1

qklRe{�∗
k �lckc

∗
l }Re{c∗k cl}

‖�‖2|ck |3 |cl|3 : (B.4)

Appendix C.

A key tool that was utilized in the preceding appen-
dices is presented here. Speci9cally, we are interested
in evaluating the following expression:

E
[
Re{c∗1nH1 �}Re{c∗2nH2 �}

]
=E

[
c1rc2r(nT1r�r + n

T
1i�i)(n

T
2r�r + n

T
2i�i)

+c1rc2i(nT1r�r + n
T
1i�i)(n

T
2r�i − nT2i�r)

+c1ic2r(nT1r�i − nT1i�r)(nT2r�r + nT2i�i)
+c1ic2i(nT1r�i − nT1i�r)(nT2r�i − nT2i�r)

]
: (C.1)

In (C.1), c is a complex scalar, n1, n2, and � are
complex vectors. In addition, the subscripts r and i
denote real and imaginary parts in the expansion. Un-
der assumptions A1 and A2, the resulting statistical
properties for the real and imaginary parts of the noise
lead to the following simpli9cation for (C.1), where
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q12 = E[nH1 n2]:

E[:] =
q12
2
(c1rc2r + c1ic2i)(‖�r‖2 + ‖�i‖2): (C.2)
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