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Abstract. Using Shannon’s definition of entropy, Fano’s bound identifies an inequality that lower
bounds the error probability in a communication channel. The expression is important in communi-
cation theory, and it offers insights on how classification performance is affected by the information
transfer through linear or nonlinear transformations. In this paper, we derive a family of lower bounds
using Renyi’s entropy, which yield Fano’s lower bound as a special case. Using various values for the
free parameter in Renyi’s definition of entropy, it also becomes possible to construct a family of up-
per bounds for the probability of error, which was impossible using Shannon’s definition of entropy.
Further analysis to obtain the tightest lower and upper bounds revealed the fact that Fano’s bound
is indeed the tightest lower bound, and the upper bounds become tighter as the free parameter ap-

proaches one from below. Numerical evaluations of the bounds are provided for two cases, including
baseband QPSK communication with AWGN.
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Symbols:

M, W: Discrete random variables with probability mass {p(my)}pre; and {p(wg)}ne,
p(w;, mg): Joint probability mass function of M and W

p(wj|my): Conditional probability mass function of W given M

e: Discrete random variable with distribution {pe,1 — pe}

1 Introduction

In the information theory literature, Fano’s bound is a well-known inequality that is essential to
prove the converse to Shannon’s second theorem [1]. As it is well known, Shannon’s capacity theorem
states the rate conditions to transfer information through a channel with arbitrary low probability of
error. Shannon’s brilliant insight was to model the communication channel as a system that includes
uncertainty in the transmission and as such its effect can be modeled by conditional entropy, but in
reality we use channels close to the Shannon’s bound so our messages have a non-vanishing probability
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of being corrupted by noise. In this case it is important to quantify the probability of error. Fano’s
bound is exactly the result we are seeking, since it expresses the probability of error as a function of
the conditional entropy.

One of the great assets of information theory is the abstract level of the analysis. Hence, there
are many other domains where the same type of ideas and formulation applies. We are particularly
interested in adaptive systems’ learning, so we would like to mention Linker’s infomax principle [2]
and feature extraction in statistical pattern recognition [3]. Linsker’s infomax is a principle of self-
organization for multilayer systems. The basic idea is to require that an optimal sub-subsystem should
transfer as much information as possible from its input to its output (maximize the mutual information
between its input and output). The analogy with the communication channel is obvious.

We know that when signals are mapped to subspaces, information is not preserved [4], but even
in these cases the goal of the system designer should be to transfer as much information as possible
from the input to the output. A good example of this type of subspace mappings is feature extraction.
The issue of choosing optimal features has been central to pattern recognition, and concepts of infor-
mation theory have been utilized since the early 60’s by Fu [5] and others. Feature extraction can be
formulated as a process that projects data from a high to a smaller dimensional space, preserving the
discriminability among the classes. Conversely, feature extraction can be formulated as maximizing
the mutual information between the output of the mapper and the desired (classification) output. We
have recently utilized this concept to train neural networks directly from samples for optimal feature
extraction using a nonparametric estimator based on Renyi’s entropy [6]. In all of these cases, Fano’s
bound appears as the central-piece because it relates classification error to conditional entropy [7, 8].

Unfortunately for statistical pattern recognition and machine learning, Fano’s bound is not of
practical use to determine the probability of error (p.) since it provides a lower bound to p., although
it is important because it points out the best possible performance that can be attained. The goal in
classification is to minimize p., hence a lower bound is not as useful as an upper bound. Unfortunately,
upper bounds for p, are not easy to compute nor that tight [9, 10].

Fano’s inequality is based on Shannon’s definition of entropy, as this definition was the only one
available to him at the time [11]. Inspired by Shannon’s exemplary work [12], many researchers
concentrated their efforts on information theory. One of them was Alfred Renyi, who was able to
formulate the theory of information starting from basic postulates [13]. Renyi was able to establish a
profound mathematical theory for the concept of information and he devised alternative expressions
for quantities like entropy and mutual information for which Shannon’s definitions became special
cases.

Motivated by these facts, we have developed a family of lower bounds, using Renyi’s definitions of
information theoretic quantities that are counterparts of Fano’s bound. Exploiting the advantage of
having a free parameter in Renyi’s definitions, we were also able to formulate a family of upper bounds,
which was impossible to achieve with Shannon’s definitions. As a result, we are able to bracket the
classification error probability by utilizing different values of the mentioned parameter.

The organization of this paper is as follows. First, we provide the definitions of all information
theoretic quantities, both Shannon’s and Renyi’s versions, that will be necessary in formulating the
bounds. Second, we will review Fano’s bound. Next we present the derivation of the lower and upper
bounds for probability of error using the conditional entropy, and state the equivalent expressions
when joint entropy and mutual information are utilized. We then investigate the effect of the free
parameter in Renyi’s entropy on the value of entropy and making use of these results, we put forward
several modifications that can be applied on the lower and upper bound expressions. Next, we study
the optimal values for the free parameter that yield the tightest lower and upper bounds, and show
that Fano’s bound happens to be the tightest in the family of lower bounds. Finally, we present
numerical evaluations of the bounds in a number of case studies, to provide a better understanding of
their performances.



42 1JCSS, Vol. 3, No. 1, 2002

2 Definitions of Information Theoretical Quantities

Several information theoretical quantities are of interest for the development of the lower and upper
bounds of the classification error probability. These are joint entropy, average conditional entropy, and
average mutual information. We will drop the term ‘average’ in these from now on. In the application
of the below arguments to classifiers, we use the random variable M to denote the actual class of a
sample (called the input class), and W to denote the decided class of a sample (called the output
class). The random variable e is used to denote the events of erroneous and correct classification with
probabilities {pe,1 — pe}-

Shannon’s Definitions: Shannon’s entropy definition is the inspiration for all the quantities men-
tioned. For discrete random variables M and W, whose probability mass functions (pmf) are given
by {p(my)}ne, and {p(w]-)};-v:cl, Shannon’s entropy is given by [12]

Ne

Hy(M) == p(my)log p(my) (1)
k=1

Based on this definition of entropy, the joint entropy, mutual information, and conditional entropy are
defined as [11]

N. N¢
Hy(M,W) = =Y p(mg,w;)logp(my, w;)
k=1 j=1
Je, e p(my, w;)
= mg, w;) log ——2 7
I,(M,W) = kglj;p( k> J)lgp(mk)p(wj)
N,
Hy (M |W) = Y Hy(M |w))p(w;) (2)
7j=1
where
N,
Hy(M |w;) = =Y p(mi | w;)logp(my | wy) (3)
k=1

and p(mg,w;) and p(my | w;) are the joint probability mass function and the conditional proba-
bility mass function of the event in M and W, respectively. Shannon’s mutual information is equal
to the Kullback-Leibler divergence [14] between the joint distribution and the product of marginal
distributions and it satisfies the following desirable property [11].

Is(M,W) = Hy(M) — Hy(M | W) (4)

Renyi’s Definitions: Renyi’s entropy for M with {p(my)},<, is given by [13]

1 Ne
Ho(M) = 7——log > p*(my) (5)
k=1

where « is a real positive constant different from 1. Accordingly, we get the average mutual information
and average conditional entropy expressions as [13]

1 NC NC

Ho(M,W) = ——log) } p(my,wj)
k=1j—1
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Shannon’s and Renyi’s Entropies for Binomial Distribution
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Figure 1: Shannon’s and Renyi’s entropies for a binomial distribution

c c mk,w )
I,(M,W) = J
a Pl 1pa 1 pa— 1( ])
H,(W|M) = ZP mg)Ho (W | my) (6)
where
1 Ne
Ho(W | mg) = o log Y p®(wj | my) (7)
j=1

We will see that the free parameter a of the Renyi’s definitions is helpful in bracketing the prob-
ability of error from above and below. From a mathematical point of view, the parameter « acts
as a variable that adjusts the value of entropy assigned to a given distribution without changing the
ordering among distributions. From an engineering point of view, on the other hand, the role of « as
a free parameter is to provide flexibility to the designer in determining an entropy definition that will
best fit the problem at hand. In order to demonstrate the effect of o on the value of entropy, consider
the Bernoulli distribution {p,1 — p}. In Figure 1, Shannon’s and Renyi’s entropies of this distribution
as a function of p are shown for various values of . It is worth noting that in the limit as o — 1
Renyi’s definitions approach those of Shannon’s (this is easily seen using L’Hopital’s rule). This fact
is also evident from Figure 1.

3 Fano’s Bound

While working on the applications of information theory to digital communications, Fano determined a
lower bound to the probability of error for the classification in discrete-symbol communication systems
[11]. In this scheme, the symbols are selected from a discrete symbol set consisting of N, elements.
Each symbol my in the set has a known prior probability p(myg). At the receiver side, the signal space
is partitioned into M mutually exclusive sets wy, where the decision is made according to which set the
received signal falls into. The conditional probability of ‘k-th symbol was sent while the decision was
j-th symbol’ is denoted by p(my | w;j). Then, Fano’s lower bound for the probability of classification
error is written as

Hs(M | W) — Hs(e)

log(N. — 1)

(8)

De =
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This original inequality had found its way to the classification literature with slight modifications that
arise from the relationship between Shannon’s conditional entropy and mutual information given in
(4). Substituting the appropriate terms for the conditional entropy in (8), assuming base-2 log to
replace Hg(e) with its maximum possible value, which is 1, and in addition, replacing (N, — 1) with
N, to accommodate for 2-class problems Fano’s inequality becomes [8]

Hs(M) — I(M; W) —

log N, )

Pe 2

4 Bounds Using Renyi’s Conditional Entropy

In this section, we will derive the lower and upper bound expressions using the conditional entropy.
We will need Jensen’s inequality.

Jensen’s Inequality: Assume g(z) is convex, z € [a, b], then

g (Z wk-Tk) < Zwkg(ﬂﬁk)
k k

where >, wi = 1, and wy, > 0. If g(z) is concave, then the inequality is reversed.

The following identities on the conditional error probabilities will be useful in the derivation of the
bounds.

p(e | mg) Ep wj | my)
J#k
1 —p(e | mg) = p(wy | mg) (10)

Consider Renyi’s conditional entropy of W given my.

1
Ho(W |mg) = — - logZpa(wj | my)
J

1

1
= 3 log | Y~ p™(w; | mg) + p*(wk | my)
T LA

S log |p*(e | mk) ) (M)aﬂl —ple | mk))“] (11)

e oy ple | myg)

Using Jensen’s inequality, and (9), we obtain two inequalities for & > 1 and o < 1 cases.

ia logp®~ (e | mi) > (pi(wj | mk)>a

2\ ple [ my)

a>1

Ho(W | mk)

Ple | mi)g

/\IVI/\V

log(1 — p(e | my))*~!

logZ( (w; | )a (12)

j£k 6 | mk)

H1—ple| mk»l :

= Hy(e | mg) +ple | me)

Notice that the following inequality holds for an (N, —1)-point entropy, and the equality is achieved
when the distribution is uniform.

log Y (2 L) < togw, 1) (13)

o %2\ ple [my)
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Hence, for @ > 1, from (12) and (13) we obtain
Ho(W | mg) < Hg(e | mi) + p(e | my) log(Ne — 1) (14)
Using Baye’s rule on the conditional distributions and entropies we get the lower bound for p,.
Ho(W | M) < Hs(e) + pe log(N, — 1) (15)
For a < 1, from (12) we have

Ho(W | mi) > Hs(e | mi) + ple | myg) Ho(W | €,my)
> Hg(e | my) + ple | mk)[mkinHa(W | e, my)] (16)

where the ‘conditional entropy given we make an error in classification and actual class was my’ is

ogZ( (w; | ) )a (17)

W lem
( | k €|mk)

At this step, one can also obtain a tighter upper bound by using the average instead of the
minimum of these entropies (see Appendix A). Again using Baye’s rule, we obtain the upper bound
for the probability of classification error from (16) as

Ho(W | M) > Hs(e) + pe[min Ho (W | e, my)] (18)

Hence, combining these results and fusing Fano’s special case into the lower bound, we obtain the
following interval for classification error probability.

Ho(W | M) = Hs(e) _ ~_ Hp(W | M)~ Hs(e) o >1

log(N¢ — 1) -t mln Hy(W | e, my) g<1

(19)

It is interesting to note here that, the free parameter of Renyi’s entropy definition allows us to
obtain lower, and upper bounds, thus bracket the error probability. Observe that the denominator of
the upper bound is always smaller than that of the lower bound. Also, we will see in the next section
that the numerator of the upper bound is always greater than that of the lower bound. Due to these
facts, the upper bound is always larger than the lower bound expression.

Going through a similar process, one can obtain lower and upper bounds for p, using Renyi’s joint
entropy and mutual information definitions. The derivations are provided in Appendix B. Here, we
summarize the results.

Ho(W, M) — Hs(M) ~ Hs(e) _ (Wi M) — Hy(M) ~ Hs(e) o> 1
log(N¢ — 1) —re= min Hy(W | e,my) T B<

(20)

Hs(W) — I(W; M) — Hs(e) _ Hg(W) —I3(W; M) — Hg(e) a>1

SPe > )
log(N¢ — 1) m1n Ho(W | e, my) B<1

Although the additivity of information in the manner given by (4) does not hold for Renyi’s
definitions of the corresponding quantities, we observe that similar relations arise in the above bounds
when the joint entropy or the mutual information replaces Renyi’s conditional entropy. Also note
that, in these expressions if « is chosen as 1, then the lower bound expressions become equivalent
to Fano’s bound (where Renyi’s definitions with o = 1 are assumed to be evaluated using Shannon’s
definitions).

(21)

These bounds provide an understanding of how a classifier, optimal in the sense of minimum error
probability, should behave. By observing the numerators of lower and upper bounds in (21), we see
that, the probability of error can be minimized, by making the mutual information I,(W; M) larger.
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We can regard this quantity as the transmitted information through the classifier as it represents the
shared information between the output classes of the classifier and the input classes. In addition,
the denominator of the upper bound in all the given forms suggests that we increase the entropy of
the probability distribution over the wrong classes at the output, given that a classification error is
made for a given input. Since entropy is maximized when the subjected distribution is uniform, this
term suggests that the probability distribution among the erroneous decisions is made uniform. The
intuition behind this is to make the wrong classes equally probable so that none of them stands out
as a compelling distracter beside the correct decision. It must be noted, however, that the overall
performance is a composite function of both the numerators and the denominators, thus it is imperative
to find the right balance between maximizing the denominator of the upper bound and minimizing
the numerator when trying to force the error probability to smaller values. This insight induces a
possible new training criterion and learning rule for classifiers, one that has never been considered
before. We can regard this phenomenon in analogy with the concept of learning from mistakes. It is
possible to improve one’s (the classifier’s in this context) knowledge even from erroneous decisions,
yet in regard of the requirement of the minimization of the numerator, this rule has to be utilized in
conjunction with a learning rule that maximizes the mutual information between the input and the
output. The details of how such an algorithm would be and how successful it would be is beyond the
scope of this paper, since our main motivation here is to provide a theoretical understanding between
the classifier performance and the information transfer through it. On the other hand, the possibility
of a methodology that maximizes the information transfer while extracting useful information from
mistakes is tempting to pursue further research towards the development of such training algorithms
for classifiers.

5 The Effect of o on Entropy

It is important to investigate the effect of the parameter « on the value of entropy. This analysis will
aid us understand how to choose this parameter so that we obtain the tightest bounds. In addition,
it will also clarify how choosing different values of « result in a lower or upper bound.

Fact 1 Given a discrete random variable X, if 0 < a < 1, and 1 < 3 then
Ho(X) > Hs(X) > Hy(X) [6].

Proof: We start from the definition of Renyi’s entropy and apply Jensen’s inequality.

T(X) = oo leeXs(e)

a>1

Zp(wj)% log p*~* ()
(1-a)

L

= — Zp(wj) log p(z;) = Hs(X) (22)
J

AIVIAV

(e}

This fact will be useful in showing that the upper bound is, in fact, always greater than the lower
bound.

Fact 2 Given a discrete random variable X, if 1 < o < 3, then Ho(X) > Hg(X).

Proof: Since 1 < a < 8. We have p®(z;) > p®(z;), and we can write the following inequality.

Ho(X) = ﬁlogzpa(wj)Zﬁlogzpﬁ(w‘j)
J J
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11 1
> g_ T alog%:pﬁ(wj) =7 _ﬁlog;pﬂ(mg‘)
= Hg(X) (23)

This fact will be useful in proving that Fano’s bound is the tightest lower bound.

6 Obtaining Looser Bounds

Now that we know the relationship between the Shannon’s entropy and Renyi’s entropy for choices of
a, we can construct lower and upper bound expressions that involve only Renyi’s entropy, by replacing
the Shannon’s entropy by appropriate terms. This substitution, however, may result in looser bounds.
From Fact 1 we know that Hg(e) > Hg(e) > Hg(e) when 0 <@ <1land 1< B. Thus, we can replace
Hg(e) with these two quantities to obtain the following bounds.

Hy(W | M) — Hz(e) Hg(W | M) —Hz(e) a>1, a<l

— 24
log(N, — 1) =Pe> ming Hg(W | e,my)’ B<1, B>1 (24)

It is possible to make similar substitutions in the bounds involving joint entropy and mutual
information for the terms with Shannon’s entropy.

In the lower bounds, it is also possible to make more drastic substitutions for the term Hg(e) and
the denominator as in Fano’s bound. In the upper bounds, Hg(e) can be replaced with 0. With these
substitutions, the inequality reads

Ha(W|M)—log2< < Hg(W | M) a>1
Tog NV, =Pe = Ning Hy(W | e,mz)’ B< 1

(25)

It must be noted, however, that these replacements may severely degrade the tightness of the
bounds, therefore may not be practically useful.

7 Finding the Tightest Bounds

Now that we have a family of lower and upper bounds (19, 20, 21), where « and j are the parameters
for lower and upper bounds respectively, and the relationship between the entropy values for various
values of these parameters, we are ready to address the problem of determining the tightest bounds.
Consider the lower bound given in terms of Renyi’s conditional entropy of W given M, given in (19).
This lower bound is maximized when H,(W | M) takes its maximum value with respect to a. Since
a > 1, choosing a smaller value for «, due to Fact 2, will maximize the conditional entropy, and
eventually Shannon’s entropy (o = 1) will yield the maximum value for this quantity, due to Fact 1.
Hence, the corresponding value gives the tightest lower bound for probability of error (i.e. Fano’s
bound). Although this tightest lower bound is not exactly equal to Fano’s bound in (8), it could
have been obtained using Fano’s original proof presented in [11], with a slight modification of variable
names. Therefore, we call this tightest lower bound, the Fano’s bound.

Computing the best value of § < 1 to yield the tightest upper bound, however, is not as simple. In
the upper bound expression in (19), two terms, one in the numerator, the other in the denominator,
depends on the value of 8. Therefore, the optimal value must be a balance between minimizing the
conditional entropy in the numerator, and maximizing the conditional entropy in the denominator.
Intuitively, we conjecture that for a broad range of classifiers, the upper bound will assume its tightest
value when the parameter 8 approaches to 1, from below and infinitesimally close. In fact, we observe
this behavior in the case studies that are to be presented in the following section. Thus, an interesting
property of these information theoretical bounds arises: Shannon’s entropy acts as a threshold point
at which the transition from the lower bound domain to upper bound domain is made.
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8 Practical Evaluation of Bounds from Samples

The lower and upper bound expressions obtained in the previous sections are significant theoretical
results that enable us to identify the effect of information transfer through a classifier and its classi-
fication error probability. However, in practice, one has to estimate the required quantities from the
samples. For this, there are plenty of approaches one can follow. In order to estimate the bounds, the
following probabilities need to be estimated: {p(wj | mk)};:[;:l and {p(mk)}ff;l.

The first and the trivial approach is to estimate these probabilities by counting appropriate samples
and then dividing by the total number of samples. Clearly, if the number of samples is large, this
method will result in accurate estimations. A possible problem with this approach occurs in the small
sample case, i.e. the number of samples is not large enough to estimate all the required probabilities
accurately due to the sparsity of the samples.

The second approach, which may overcome this problem, is to use Parzen windowing, shifted
histogram or similar methods to obtain continuous distribution estimates and then to integrate them
over the appropriate regions to obtain the distributions for the discrete variables W and M. We have
recently proposed a method to overcome the integration when we use Parzen windowing and Gaussian
kernels [6, 7]. It is possible to formulate the windowing problem such that the same procedure can be
applied to avoid the integrations.

The third approach is suitable for classifiers that are trained in the minimum MSE sense. We know
that, in this configuration, the decision functions of the classifier tend to approximate the conditional
probabilities p(w; | mg),j = 1,..., N, when a sample from class my, is introduced (especially in the
case of multilayer perceptrons the outputs for each class are representations of these probabilities)
[15]. One can exploit this property and obtain estimates for these conditional probabilities, and hence
evaluate the lower and upper bounds. It should be noted that the accuracy of such an estimate would
depend heavily on the classifier’s ability to represent these conditional probability functions.

In any case, we stress here that it is not the accuracy of these bounds in estimating the probability
of error, but it is the theoretical insights that they provide the designer towards understanding the
relationship between the final performance and the amount of information residing in the data. The
more important implications of these bounds are rather the possibilities they offer us in designing
better classifiers in the sense of maximum information transfer.

9 Numerical Evaluation of the Bounds

In order to fully understand the behavior of these bounds, and to observe their performance in different
situations we studied two cases. The first is a simple example to evaluate the lower and upper bounds
for various values of o and 3, and the second one is the evaluation of lower and upper bounds for a
QPSK communication scheme over an AWGN channel (we name this example as the QPSK because
this four-class scheme occurs in practice under the stated assumptions about the communication
system). The case study is constructed as follows. Given three classes and a classifier with the
following conditional probability matrix, where the ij-th entry denotes the probability of classifier
decision is class-z, when the actual class was class-j.

I—pe pe—e €
PW|M = € 1—pe pe—c¢ (26)
Pe— € € 1 —pe

Each column represents the distribution of probabilities among the output classes of the classifier,
and the diagonal entries correspond to the probability of correct classification given the actual class.
Hence, with these conditional probabilities, the bounds are indifferent to the actual class and their
prior probabilities. In addition, the probability of error is fixed at 0.2 and is equal to the conditional
probability of error given any actual class label. This way, the analysis is simplified to the investigation
of the effect of probability distribution among the wrong classes. By varying ¢ in the interval [0, p. /2],
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Upper and Lower Bounds for Various Values of Alpha and Beta
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Figure 2: Family of lower and upper bounds for probability of error
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Figure 3: Bounds using the three schemes for different priors

we can study the performance of the bounds in terms of tightness. Figure 2 shows the lower and upper
bounds of (19) for this example as a function of ¢.

We observe that the family of lower bounds become tighter as « is decreased, eventually attaining
Fano’s bound as the tightest. Similarly, we observe that, the upper bounds become tighter as f is
increased to approach 1. One other interesting observation is that the upper bounds remain virtually
flat over a wide range of €, suggesting that it practically provides a bound that is as tight for a broad
variety of classifiers as the optimal classifier where the probability distribution among wrong classes
is uniform (e = p./2 in the three class case).

The following case study examines the differences between the three alternatives in (19, 20, 21),
namely, conditional entropy, joint entropy, and mutual information bounds. Also, the effect of prior
class probabilities on these three bounds is investigated. Figure 3 summarizes the results for two
choices for prior probabilities, one of them uniform.

In this case study, we observe that that three expressions for the upper and lower bounds using
alternative information theoretic quantities yield almost the same value, but their closeness is related
to how the priors are distributed. We observe that if the prior distribution is close to uniform, then all
three bounds are practically the same, and as the prior distribution diverges from uniform, the three
bounds exhibit slight deviations from each other.

As a second example, we evaluate the information theoretic bounds for a baseband QPSK digital
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The Probability of Errar and Bounds for GPSK
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Figure 4: Probability of error and its bounds for QPSK

communication scheme over an AWGN channel. The energy per transmitted bit is F} and the PSD
for the additive white Gaussian noise is Ny/2. In this problem, it is possible to evaluate the exact
values for average bit error rate, p., and all the probability distributions required for the evaluation
of the bounds in terms of Q-functions and is given in (27).

(1-Q1)* Qix(1-@Q1) Q3 Q1 *(1—-Q1)

PAPSK _ Qi+x1-Q1) (1-Q1)* @Qi+x(1-Q1) Q? (27)
wiM Q+x(1-Q1) Q1x(1-Q1) (1-Q1)* Qi+(1-0Qy)
Q32 Q3 Qx(1-Q1) (1-Q?

where Q1 = Q(\/2E/Np). The priors for symbols were assumed equal, i.e.p(my) = 1/4,k = 1,2,3,4.
Finally, Figure 4 shows the probability error and the lower and upper bounds for this scenario.

As a last example, consider a 16-class problem where the input classes are centered as shown
in Figure 5 with circularly symmetric two-dimensional Gaussian distributions located at these cen-
ters (this situation occurs in the 16-QAM modulation scheme with AWGN channel model in digital
communications). The confusion matrix of this classification problem is 16x16 and similar to (27) in
structure. We omit this matrix for the sake of saving space. Since the number of classes increased in
this case, compared to the QPSK example, we expect the bounds to be looser, as the inequalities led to
both denominators (in the lower and upper bounds) will be stronger. However, this phenomenon does
not change the main conclusion of this work, which is about the relationship between the classification
error probability and the amount of information transferred through the classifier.

10 Conclusions

Fano’s bound is a widely recognized inequality in the information theory literature, and it provides
an understanding of how probability of error in classification is related to the information transfer
through a classifier from its input space to its output space. Fano’s work, however, is based on
Shannon’s definition of entropy, which is a special case of Renyi’s definition. In this paper, inspired by
the work of Fano, we have derived a family of lower and upper bounds for the probability of error in
which the free parameter of Renyi’s entropy identifies which specific bound in this family is selected.
An interesting result arising from these inequalities was that while the lower bounds employed Renyi’s
entropy with parameter greater than or equal to one (latter is the Fano’s bound), the upper bounds
utilized Renyi’s entropy with parameter less than one. Thus, we were able to exploit this property of
Renyi’s entropy to acquire more information about the probability of error.
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Figure 5: a) 16-QAM counstellation; centers of classes in two dimensional input space b) Probability
of error and its bounds for the 16-class case

The effect of the parameter of Renyi’s entropy, on the tightness of the bounds, was also examined
and it was proven that in the family of lower bounds, Fano’s bound offers the tightest lower bound. As
for the tightest upper bound, it was conjectured that, as the parameter approached to one (from below)
the expression provided a tighter bound. This conjecture was supported by numerical evaluations, and
in these evaluations, it was noted that the tightness of the upper bound was the same for a wide range
of classifiers. Numerical evaluations for comparing the performance of bounds incorporating different
information theoretic quantities, namely conditional entropy, joint entropy, and mutual information,
revealed that there was practically little or no deviation among them. Although small, it was observed
that the prior probabilities of the classes in the input space had an effect on the values of the lower
and upper bounds.

In addition, the bounds for a QPSK communication scheme with AWG noise were evaluated as
to demonstrate how these bounds would be applicable to real-life problems and it was shown that by
appropriate choice of the family parameters, it is possible to obtain extremely tight bounds for the
average bit error probability in this realistic problem.

Although not illustrated here, we mentioned briefly that it is possible to obtain estimates of the
bounds by employing various nonparametric estimates for the probability mass functions that are
required in the computation. The simplest of these estimators we have mentioned is the sample-
count method. Our simulations have showed that with a reasonably small number of samples (around
500), the bounds for QPSK can be estimated with a small variance. Alternatively, neural networks
can be trained to produce estimates of the desired conditional probabilities or nonparametric pdf
estimation methods like Parzen windowing can be employed to obtain pdf estimates, which can then
be integrated over the appropriate regions in the output space to yield estimates of the required
conditional probabilities. As a final remark on this, in practice, it is possible to obtain an estimate
of the probability of error with the information that is required to obtain an estimate of the bounds.
Nevertheless, the bounds can still be informative and may be used as confirmation parameters for
these estimates.

The key conclusion from all these bounds on misclassification probability is that, by training
classifiers to maximize mutual information between its input and output vectors, its probability of error
is forced to decrease. Similarly, for optimal feature extraction that will result in minimal classification
error probability, one needs to consider the amount of information transferred, by the feature selection
mechanism, from the raw data to the selected features. The bounds involving the conditional entropy,
on the other hand, assert that to improve performance, the uncertainty of the output distribution
(variation of the decisions given a sample) must be minimized; this is a validation of common sense.
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Appendix A

Instead of applying the drastic minimum operator in (16), we could have obtained another bound as
follows. We have the following inequality for the conditional error probability from (16).

Ho(W | my) — Hs(e | my)
Ha(W | eamk)

ple|my) < (28)

We now multiply both sides with p(my) and sum over all k& to obtain an upper bound for error
probability.

H,(W | my) — Hg(e | mk))
p(mg)p(e | mg) < p(my) ( 29
= 2 plmelpe [me) <3 Ha(W | ) 29)
Similar upper bounds with joint entropy and mutual information may be derived with the same
argument. It is also possible to obtain tighter lower bounds in the same manner by taking the average
of the individual bounds for the conditional probabilities instead of substituting log(N, — 1) for the
multiplier of p(e | my) in (12).

Appendix B

Derivation of bounds using joint entropy and mutual information. Consider Renyi’s joint entropy.
Staring from the definition, and applying Bayes’ rule and Jensen’s inequality, for different values of «,
we obtain two inequalities.

1
HoW,M) = 1— logzzpa(wj,mk) -

p

i —logy > p*(w; | me)p® (my)
ko

E
a<l

~—log Y p (wy | i)
J

= > plmy) l— log p(mi) + 7 i ~log [Zpa(wj | mk) + p* (wy | mk)”
P

i#k

= +ZP M)

a>1

- log [ZP wj | mg) + p*(wy | mk)]

J7#k
logz ( (wj | mg) )a](%)

—I—Zp m) [Hs e | mg) +p(e | mg)
a<1
Hence, rearranging the terms, we obtain the following inequality

Ho(W, M) — Hs(M) — Hs(e) _ ~_ Hp(W,M) — Hg(M) — Hs(e) a>1
log(N, — 1) =P = T i Hy(W | e,my) 0 B<1

Now consider Renyi’s mutual information. Once again applying Jensen’s inequality in two steps,
we can obtain the lower and upper bounds for error probability.

(31)

I(M;W) = IOgZZ o1 wj’am’fzmk) _ ! IOgZZ *(wj | mlc)J)(mk)
E p(mk)a — log Zpa(wj | mk)pl_a(wj)
o<l ;

[(E{ (wj | my)p™™*(wy) + p*(wy, | m/c)Pla(ka)-|

J#k

= Y oplmi)—
k
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2! (e | m)—— log [ 3 L(e | m p*(wj | my)p'~*(w;)
£ v ’“)a—llg(p e el )
+(1—ple | my)~ i 7 log(1 —pe] mk))“lplo‘(wk)] (32)

Now, rearranging the terms, and applying Jensen’s inequality,

g 3™ s L )~ )

1
Zp my) [ Hg(e | mg) + p(e | my)
1- Zr p*(e | my)

a<1 k

—(1—p(e|my)) 10gp(wk)]

=" p(my) [—Hs(e | mg) + p(e | mi) log p(wg)
k

—log p(wg) + p(e | my)

ng wglmk)p (wj)]

j#k e | mk)

> p(my) l—Hs(e | mk) + p(e | my) log p(wy) — log p(wg)
%
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Finally, rearranging the terms and substituting appropriate extreme values for multiplier of p., we
obtain the following inequality on error probability in terms of Renyi’s mutual information.

Hs(W) — 1o(W; M) — Hs(e) .~ _ Hs(W) —Ig(W; M) — Hs(e) a>1
log(N, — 1) =Pe = T ning He(W | e,my) B<1

(34)



