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An Error-Entropy Minimization Algorithm for
Supervised Training of Nonlinear Adaptive Systems

Deniz ErdogmusMember, IEEEand Jose C. Princip&ellow, IEEE

Abstract—This paper investigates error-entropy-minimization Unknown
in adaptive systems training. We prove the equivalence between
minimization of error’'s Renyi entropy of order « and minimiza-
tion of a Csiszar distance measure between the densities of desired
and system outputs. A nonparametric estimator for Renyi's
entropy is presented, and it is shown that the global minimum of
this estimator is the same as the actual entropy. The performance
of the error-entropy-minimization criterion is compared with
mean-square-error-minimization in the short-term prediction of
a chaotic time series and in nonlinear system identification.
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Index Terms—Minimum error entropy, Renyi's entropy. Fig. 1. TDNN prediction scheme; an example of supervised learning.
constrained. The entropy criterion can generally be utilized as
. INTRODUCTION an alternative for MSE in supervised adaptation, but it is partic-

TARTING with the early work of Wiener [1] on optimal Ularly appealing in dynamic modeling [9].

Sﬁltering, the mean square error (MSE) has been a popularThe goal in dynamic modeling is to identify the nonlinear
criterion in the training of all adaptive systems includinglynamical system that produced the given input-output map-
artificial neural networks [2]. The two main reasons behinging. This is traditionally achieved in a predictive framework
this choice are analytical tractability and the assumption th&ee Fig. 1) using a nonlinear adaptive system, whose parame-
real-life random phenomena may be sufficiently describd@rs are adapted with the MSE between the desired output and
by second-order statistics. The Gaussian probability densiie System output. Minimization of MSE s, however, simply
function (pdf) is determined only by its first- and second-ordéionstraining the square difference between the original trajec-
statistics, and the effect of linear systems on low order statistf€§y and the trajectory created by the adaptive system, which
is well known [3]. Under these linearity and Gaussianitg(oes not guarantee the capture of all the details of the under-
assumptions, further supported by the central limit theoremfing dynamics. Hence, we propose minimization of error en-
MSE, which solely constrains second-order statistics, wolli®Py (MEE) as a more robust criterion for dynamic modeling
be able to extract all possible information from a signal whosgd an alternative to MSE in other supervised learning applica-
statistics are solely defined by its mean and variance. tions using nonlinear systems such as nonlinear system identi-

Although Gaussianity and linear modeling provide successfiffation with neural networks.
engineering solutions to most practical problems, it has becoméPplication of the entropy criterion to supervised learning
evident that when dealing with nonlinear systems, this approdéh conceptually - straightforward. Given samples from an
needs to be refined [12]. Therefore, criteria that not only coHPut—output mapping, the entropy of the output error over the
sider the second-order statistics, but that also take into accotiathing data set must be minimized. In the following, we show
the higher order statistical behavior of the systems and signdi@t minimizing the error entropy is equivalent to minimizing
are much desired. Recent papers have addressed this issuebgtiflistance between the probability distributions of the de-
in the control literature [4] and in the signal processing/machiéed and system outputs. These distance measures, from the
learning literature [5]—[7]. information-geometry point of view, are directly related to the

Entropy, which is introduced by Shannon [8], is a scalar quaflivergence of the statistical models in probability spaces [10].
tity that provides a measure for the average information con-Nonparametric estimation of the probability density function
tained in a given probability distribution function. By definition,(Pdf) ofarandomvariable, whichis necessary forthe evaluation of
information is a function of the pdf; hence, entropy as an opffS €ntropy, is required since an analytical expression is not avail-
mality criterion extends MSE. When entropy is minimized, aftble in most cases. Parzen windowing is an efficient way to ap-
moments of the error pdf (not only the second moments) dfEoximate the pdf of a given sample distribution, particularly in

low-dimensional spaces[11]. In Parzen windowing, the pdfis ap-
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tors. The Gaussian kernel, in addition to these nice features, padiere f(.) is convex [14]. Kullback—Leibler divergence [15] is
vides acomputational simplificationinthe algorithm design [12& special case of this divergence corresponding to the choice
The organization of the paper is as follows. First, the equiva-log(.). Consequently, we infer that minimizing Renyi’s error
lence of entropy minimization and pdf matching is establisheéntropy results in the minimization of the divergence between
Second, an analytical proof shows that the global minimum tfe joint pdfs of input-desired and input—output signal pairs.
the entropy is still a minimum of the Parzen window estimatethis readily guarantees the matching of the marginal pdfs of
entropy when Gaussian kernels are employed. Then, the baitie desired and the output signals.
propagation algorithm for both Shannon’s and Renyi’s entropy It is interesting to note that for Shannon’s entropy, the dis-
of order 2 are given for the one-dimensional (1-D) case. Finallgnce measure in (3) also reduces to the Kullback-Leibler di-
two case studies where the entropy criterion is applied to tliergence. To see this, we start by modifying the minimization
short-term prediction of a chaotic time series and to the idengiroblem by taking théog and dividing by« — 1
fication of a nonlinear system are presented. The performances

l—«
of MSE—trai.ned and entropy-trained time delay neural networksm- 108/ Fomo(®:9) < fea(z,y) ) dady.
(TDNN) built from multiplayer perceptrons (MLPs) are com- Jeuw(T,Y)
pared in terms of their accuracy in approximating the pdf of the (%)
desired outpuit. Now, taking the limit of this expression as— 1 using L'Ho-

pital’s rule, we obtain the Kullback—Leibler divergence

11—«
“ytos [[ fentew <ffffl(< )>> edy

Consider the error between the desired and the actual outputs Foy (@, 7)
of the adaptive system (Fig. £)= d — y. From this, we can // Jay,w(®,y)log < o ) ) dzdy. (6)

deduce the pdf of the error as
_ Since Shannon’s entropy is the limiting case of Renyi’s en-
Fenw(€) = Fyjould = clz) @ tropy whena — 1 (this fact can also be observed using L'Ho-
where the subscript expresses dependence on the weights pital’s rule as Renyi’s entropy has a singularity at this value of
the adaptive system. Minimizing Renyi’s ordererror entropy <), we conclude that specifically, minimizing Shannon’s error

Il. ERROR ENTROPY MINIMIZATION AND PROBABILITY
DENSITY MATCHING lun

fra(z,y

[13] thus becomes entropy minimizes the Kullback-Leibler divergence between
the joint densities of the input-desired and input—output pairs.
mln log/ffw
[1l. N ONPARAMETRIC ENTROPY ESTIMATOR PRESERVES THE
= 1Og/fJ|T w(d —elz)de GLOBAL MINIMUM OF ACTUAL ENTROPY

o Now, we proceed with proving that the global minimum of
T 1_a 10%/ _fylw,w(mx)dy @) the entropy is still a minimum of the nonparametrically esti-
mated entropy for both Shannon’s and Renyi’s definitions when
Parzen windowing with Gaussian kernels is utilized. In practical
applications, the pdf of the random process is often unknawn
rHI’IOI‘I Hence, we will utilize the Parzen window method to es-
trllmate the pdf directly from the samples. The Parzen estimator
O0f the error pdff.(£) is given by

after the variable change gf = d — e. Since we will be con-
cerned with Renyi's quadratic entropy in this pager= 2),

consider the case where entropy ordeis greater than one.
Since multiplying the cost function with a factor independe
of the weights of the adaptive system will not affect the soluti
of the problem, we introduce the integral of the poweof the

pdf of the input signal in (2) to obtain the equivalent minimiza-

tion problem in (3). fe( =% Z —e,0 7)
:1;}11}11/fy|x7w(y|x)dy ' /f’” i wherex denotes the multidimensional Gaussian function with
o a radially symmetric variance? for simplicity. This estimator
:/ Faywl@, y)dudy can then be substituted in the Renyi’'s entropy definition given
o in the first line of (2) or Shannon’s entropy given in (8).
// Sfoyw(@,y)dudy: //f (, y)dxdy Shannon’s EntropyWe can estimate Shannon’s error entropy
l1-a [8] by substituting the Parzen pdf estimate in place of the actual
—mln/ /. <M> dzdy. (3) error pdf, yielding
oo fa}y w(w y) ,
We recognize this last expression in (3) as the Csiszar dis- Hs(e) = — /Oo fe(&)log fe(&)de. (8)
tance [14] with the convex function chosen to(bg —=. In gen-

eral, the Csiszar distance between two densjties and ¢(z)

A Clearly, the global minimum of Shannon’s entropy is achieved
is given by

when the pdf of error is a Diraé-function. Since entropy is
Dl o) — p(x) d 4 independent of the mean of the random variable, without loss
(p;9) 9(=)f * ) of generality, we can concentrate on the case where the mean

()
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of e is zero. The gradient of entropy estimated for the Gaussi&hannon’s entropy. Similarly, the eigenvector corresponding to

kernel is given in the zero eigenvalue is equal as well, and therefore, all the re-
o0 lated arguments are valid for Renyi’'s entropy. Thus, we con-
O0Hs 0 ; ; " . . )
5o = Be. fe(&)log fe(&)dE clude that Renyi's entropy approximated by Parzen windowing
J J J =0

S with Gaussian kernels has minima along the line where the error
=— / Nz (€ —¢;)r(€E—¢;)log fodE. (9) 1S completely constant over the whole data set. _
—oo VO This analysis, however, only shows tlkat 0 is a local min-
Evaluating this gradient at zero error over the complete setigfum of Renyi's entropy estimator. In order to prove global-

datac = [e; --- en] = 0, we get the integral of an odd ness, we need some further analysis. Consider specifically the

function nonparametric estimator for Renyi’s quadratic entropy, which
OHs o q is much simpler to estimate using Gaussian kernels, compared
9e, |._, = —/Oo N2 ¢r(€)logr(€)dE = 0. (10) with Shannon’'s entropy and other orders of Renyi's entropy

[12], [17]. When we substitute the Parzen estimator in (2) with
Hence, = 0 is a stationary point affs(¢). Computation of the quadratic entropy expressifm = 2), we obtain
the Hessian is necessary to see if itis, in fact, a minimum. Using

N 2
the same approach as above, the diagonal and off-diagonalen- . 1 2 T
tries of the Hessian are found to be My = —log N ; ME =i on) | db = —logV(c).

92Hs 0 [0Hs N-1 _ | _14)
e =50, < 9o, )‘ = N2g2 The argument of thiog, V(e)_ls called theinformation po-
7 le=0 J 4/ 1e=0 tential[12]. It can be calculated in closed form from the samples
9*Hs 9 <8H5> -1 (11) using Gaussian kernels as
derdey | ,_, ey, \ ey -0 T ON2g2 | NN
The eigenvalues of the Hessian matrix can then be computed Vie) = N2 Z Z K(ei — ej,207). (15)
as)g = 0 with multiplicity 1, with a corresponding eigenvector i=1j=l1
G=1[1 1 - 1]%,and\ = 1/(No?), with multiplicity  This expression is obtained from (14) by interchanging the order

(N —1); hence, the Hessian is positive semi-definite. The eigetf summations and the integral. Then, we notice that the integral
vector corresponding to the zero eigenvalue lies along the df-a product of Gaussian kernels is another Gaussian function
rection on which the mean remains constant, that is, the valwigh twice the variance. Using this expression, one can estimate
of the entropy is constant. This is expected since the entropythe value of entropy foe = 0. It is simply

independent of the mean. This can be easily shown by a simple

change of variables in the entropy definition. Therefore, we con- Hy(e = 0) = —log (0; 20%). (16)
clude that Shannon’s entropy estimated by Parzen windowimg complete the proof of globalness, we need to show that any
with Gaussian kernels has minima in the directions where alher combination of error sample values results in a larger value

the error samples are identical over the whole data set. of entropy, i.e.,

Renyi's Entropy Renyi's entropy is defined by (2) and is 1
known to approach Shannon’s entropycaapproaches 1 [16]. —log N2 Z Z Kk(e; — ei;20%) > —log k(0;207)  (17)
Like Shannon’s entropy, it is also independent of the mean of i

¢. In practical situations, we will have to work with an estiyr equivalently
mator. Here, we will still be using the Parzen estimator with a
Gaussian kernel in (7). The gradient of Renyi’s entropy in the ZZ K(e; — €;20°) SN?k(0;207). (18)
case of Gaussian kernels, evaluated at 0, is i i
OHpo o 0 gt — o 12 This i_nequality is readily satisfied since, fo_r the G_aussian ker-
de;  No2(l-a) [ kede [m ¢rfdg = 0. (12) nel_s (with zero mean), the maximum value is a_chleved at zero.
e This shows that our nonparametric entropy estimator preserves

Hence, this is a stationary point. Following steps similar tge global minimum of the actual entropy.
those in Shannon’s entropy case, the diagonal and off-diagonal

elements of the Hessian matrix evaluated at 0 are found to IV. BACKPROPAGATION FORTDNN USING
be ENTROPY CRITERION
9?Hpq N-1 A typical prediction scheme with a TDNN built from a delay
8@? — - N2p2 line and an MLP [18] is shown in Fig. 1. The training criterion
2 H p = _1 char_acfterizes the learning process and de_termines the ov_erall
Derde, =N (13) prediction performance. The purpose of this scheme is to find
3 le=0

the TDNN weights that optimize the criterion of interest. Al-

Note that the Hessian matrix for Renyi's entropy computed titough TDNNs are specifically mentioned in this section, it
the optimal solution is independent af and its second-order should be noted that the gradient search presented here and
partial derivatives are identical to those of Shannon’s entrofMEE criterion applies to the supervised training of any adap-
Hence, it has the same eigenvalues as the Hessian matrixtioe system with a smooth input—output map.
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If the adaptation criterion is chosen to be the minimization of
the MSE and the optimization procedure is the steepest descent 9o}
then the training algorithm is the well-known backpropagation aol
algorithm [19]. However, if the adaptation criterion is picked to
be the minimization of Shannon’s entropy of the error due to

the reasons stated before, with steepest descent approach, tI"E 6or
training algorithm becomes [2] z 50}
H o
win+1) =wln) —n 85(6)' (19) 301
w

20

Here, the pdf estimator for the error (7) is employed. The 10

gradient of the entropy with respect to the weights is calculated o / { , ‘ ‘ e
to be -0.025 -0.02 -0.015 -0.01 -0.005 © 0.006 0.01 0.015 002 0.025
Error Value

N Fig. 2. Probability densities for errors of MSE (dotted) and entropy (solid)

oH oz; [T ?
fgi(e) _ % 3 %/_ (€ — e;)k(€ — ¢;) log fo(€)dE.  trained TDNNS.

=1

Th 9418 b d in th (2031 PE, whereas the number of PEs in the hidden layer is varied
e term 9i;/0w can be computed as in the standargl,, 344 10 The nonlinearity used is thenh function. The
backpropagation algorithm [2]. The computational drawbadlt;q of e input delay line is consistent with the embedding
of this algorithm is the requirement of the numerical evaluatiogﬂmension suggested by Taken's embedding theorem for the
of a complicated integral over the real line. Therefore, thﬁackey—Glass series [21]. The sampling period is chosen as
algorithm is extremely slow and computationally inefficients ; ¢

IEmé)onlnghRenlyl’s 3nftropy withy = 2, on the_other handl, All TDNNSs are trained with a segment of 200 samples. For
eads to the closed-form nonparametric estimator in ( ‘r@ach network, 1000 randomly chosen initial weights were tried
simplifying the computational load significantly [12], [17]. onte Carlo approach) in order to avoid local solutions. The

Slnc_:e Reny!’s quadrapc entropy is a monotonic -fu.ncu-on cfaining algorithm utilized backpropagation using a variable
the information potential, we can equivalently maximize 'nfor'tep-size gradient algorithm [22] for efficiency. The stopping

mation potential instead of minimizing Renyi's en_tropy anariteria was experimentally determined and consisted of 100
ferations for MSE-TDNNs and 30 iterations for MEE-TDNNS.
Rl'the end of the mentioned Monte Carlo training, the best
set of weights (that yield minimum cost function values for
) NN entropy and MSE) obtained by each of the criteria are taken and
Vi) 1 ZZ(G' — o) checked for further improvement by employing a very small
ow  2N2p2 o constant step size to make sure convergence of each criterion
a%; O to its global minimum is achieved. The kernel size used to
K(e; —ej,20%) [—’ - ’} . (21) estimate the entropy was experimentally set at 0.01 after a
Ow  Ow preliminary analysis of the final error dynamic range (however,

. . . . _ this value is not critical to the final performance if set properly
One important point to note in training with entropy is thaf, | iqe range given by0.001,0.1] for this example). The
since entropy does not change with the mean of the distri '

tion. the alaorith il ¢ t of ontimal weight aneral rule of thumb we use is to select the kernel size so that
lon, the algoriihm will converge 1o a Set of oplima; Welghts,, average, ten samples are covered by each kernel function.
which may not yield zero-mean error [6]. However, this can q_e

) s . inally, after training, the bias weights of the output PEs are
easily corrected by properly modifying the bias of the Outplétdjusted to yield zero error mean over the training set.

processing element (PE) of the MLP to yield zero mean €M The trained networks are tested on an independently gener-
over the training data set just after training ends. It must alsog

ted that th timizati f the TDNN with t tfaed test data set of length 10 000 since the goal is to learn the
noted that the opimization ot fhe WIth an €ntropy Cost. » wtic attractor rather than the specific trajectory. In Fig. 2,

mgtgm ‘;{} 2';5;?;42?]?;@ 'Cgﬂg’egs;?ﬁte;fegttezewl\gﬁ_incgv\s/t ne error pdf estimates for the two TDNNs with six hidden PEs
difficulties to gradient-based algorith,ms 2] R/vhich is the best solution among all MSE-TDNNSs) are shown.

' Clearly, the error distribution of the MEE-TDNN is more con-
centrated around zero. Fig. 3 depicts the estimated probability
densities of the actual Mackey—Glass data set and the predic-

As the first case study, the short-term prediction of th@ons by the two TDNNSs of interest. It is clear from these plots
Mackey—Glass chaotic time series [20] with parametes 30 that the density of the predictions made by the MEE- TDNN
using both MSE-trained and MEE (Renyi's)-trained TDNNg& much closer to that of the test data compared with the dis-
is presented. The TDNN inputs consist of the current value wibution of the predictions made by the MSE—-TDNN. This is
the sequence and six delayed values and a single linear ougxected due to the minimization of Csiszar distance when the

to be used in the steepest ascent algorithm for the maximizat
of the information potential is

=1 j=1

V. SIMULATION RESULTS
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03 02 A 0 0.1 0.2 The training set consists &f = 100 input—output pairs, and

Signal Valve the TDNN is trained starting from 50 different initial conditions
Fig. 3. Probability densities of MG30 test series and its predictions BYSING both MEE and MSE criteria. The output bias is then set
entropy-trained and MSE-trained TDNNs; desired (solid), entropy-traind@ yield zero error mean over the training set. The performances
(dots), MSE-trained (dotted). of the optimal weights obtained from the two criteria are then
compared on an independently generated 10 000-sample test set.
entropy criterion is used in training. We know that variance mir=ig. 5 shows the error pdfs for the two criteria on this test set.
imization can produce locally large errors, and this is clearljhe MSE of training set errors are 0.0676 and 0.0587, and the
seen in Fig. 3. Entropy training produces a more uniform matgtformation potentials for the same samples are 0.996 and 0.989
between the two estimated amplitude densities, resemblingfenMEE and MSE trained weights, respectively. As expected,
L;-norm fit. Thus, we are lead to believe that the entropy critéhe training MSE is lower for MSE-trained TDNN, and infor-
rion in this case is better than MSE in extracting more informanation potential is higher for entropy-trained TDNN.
tion about the pdf of the desired signal distribution. Note, how- This case study demonstrates nicely the basic difference be-
ever, that around the signal amplitude of approximately18, tween the entropy and variance minimization. Entropy prefers a
both MSE-trained and entropy-trained networks fail to approj@rger and more concentrated peak centered at zero error with a
imate accurately the distribution of the desired signal. Singémber of small peaks at larger error values, whereas the vari-
both criteria fail to model this portion of the distribution accuance (MSE) prefers a wide-distributed error on a smaller range.
rately, we hypothesize that the two most likely possible causksfact, this can be deduced by the following reasoning. Sup-
for this behavior are the insufficiency of the network topologose it is possible to obtain many error distributions with the
to capture the specific dynamics involved in that region of tH&me variance. Since the Gaussian has the maximum entropy
attractor and/or the inadequate representation of that dyna@fgong fixed variance densities, this error distribution would be
behavior in the trajectories due to the short training sequerif€ least desirable for the entropy criterion. In addition, the uni-
used. Finally, in Fig. 4, we present the central moments of tkrm would be another undesirable distribution for the error. The

desired and predicted signals for all sizes of TDNNs over ti@&tropy would prefer rather spiky distributions, i.e., a number
test data. All TDNNs with number of hidden neurons rangingf ¢-like concentrated spikes having the same variance. This is

from three to ten are trained, starting from the 1000 initial cofeserved in Fig. 5. A comparison of the desired output signal
ditions using both MSE and MEE criteria. Clearly, for all casegnd the actual MLP outputs using entropy-trained weights and

entropy achieves a better fit to the distribution of the desirddSE-trained weights is depicted in Fig. 6 to illustrate the sta-

signal compared with MSE. tistical matching property of MEE. Clearly, the entropy-trained
As a second case study, we investigate the performance of IhNN approximates the pdf of the desired output much better

MEE criterion in identification of a nonlinear system, whose dyaround the most probable regions of the domain when compared

namic equations are given in (23). Once again, a TDNN will b&ith the MSE-trained TDNN.

used. The sought-after mapping in this case is from the delayed

values of the input and the output of the unknown system to its VI. CONCLUSIONS

current output. The training set can be represented as follows:
In this paper, an information-theoretic supervised learning

{( Wh Ul Ui - Ut )T Uk} criterion for adaptive systems,_ namely, minim_ur_n error entropy
- - T (MEE), has been proposed. It is shown that minimizing Renyi’'s

k=M, . ..M+N-1 1(22) errorentropy is equivalent to minimizing a Csiszar distance be-

tween the joint densities of system input—output and the de-

Specifically, the number of input samples is chosen to be sew&@red input—output pairs. It was also proved that the Csiszar dis-
(L = 6), and the number of output samples is chosen to kence measure reduces to the well-known Kullback-Leibler di-
six (M = 6). A TDNN with seven hidden PEs is assumedyergence when Shannon’s entropy is utilized. Furthermore, it is
following the suggestion in [23]. The nonlinear system that lsnown that there is equivalence between entropy manipulation

utilized has the state dynamics and the output mapping providsetd maximum likelihood solutions [3], [15].
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Fig. 5. Distfibution of errors of entropy-trained (solid) and MSE-traine(,i_-ig. 6. Distributions of desired (solid) and TDNN outputs. Entropy (dots).
(dotted) MLP’s. MSE (dotted).

A nonparametric entropy estimator based on Parzen windofes the equivalence of multidimensional vector distributions
and Gaussian kernels is presented, and it is proved that [28]. However, unlike Diks’ work, we present here an informa-
global minimum of the entropy estimator is the same as thien-theoretic framework, and we use the information potential
global minimum of the actual entropy. This enables us to usgadapt directly the parameters of a nonlinear adaptive system.
the nonparametric entropy estimator for entropy minimization Two case studies are also presented. The first one investigated
and opens the door to the use of entropy minimization for atlye performance of the MEE criterion on the adaptation of time-
type of supervised training applications, such as system idelelay neural networks of various sizes for the short-term predic-
tification and time series prediction. Renyi’'s quadratic entrofion of Mackey—Glass chaotic time series. The second one was a
is preferred in practice due to the computational efficienayonlinear system identification problem using TDNNs. The op-
of its nonparametric estimator. It becomes possible to defitimal solutions obtained by MSE and MEE criteria were com-
the information potentigl which then facilitates an analogypared in terms of the error distributions and their performance in
between the presented approach for the information potentightching the probability density function of the desired output.
computation and the sample test statistics based on kerriHiese analyses demonstrated that the error samples of the en-
[24]. The latter is the basis of the recently proposed Diks tesbpy-trained TDNNSs exhibit a more concentrated density func-
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tion, and the distribution of the produced outputs are also closgt7] J. C. Principe, D. Xu, Q. Zhao, and J. Fisher, “Learning from examples
to that Of the deSIred Slgnals In both case Studlesl These results with information theoretic Critel’ia," VLSI Slgnal Process. SySt, 2000,

indicate the potential advantage of entropy training versus MSI[E18]

to be published.
A. Waibel, T. Hananzawa, G. Hinton, K. Shikano, and K. Lang,

training. Especially since the entropy criterion allows a wider  “Phoneme recognition using time delay neural networkSEE Trans.
range for the error in favor of a more concentrated distribution Acoust. Speech, Signal Processivg. 37, pp. 328-339, Feb. 1989.

. A : o119
for small error values, it can be useful in disregarding outliers |r{ ]

D. Rumelhart, G. Hinton, and R. Williams, “Learning internal represen-
tations by error backpropagatiori\ature vol. 323, pp. 533-536, 1986.

the desired signal if they do not fit the underlying density well.[20] D. Kaplan and L. Glassi)nderstanding Nonlinear Dynamics New
Consequently, this study prompts a new line of research that ap- _ York: Springer-Verlag, 1995.

pears to be very promising by offering a feasible alternative t

21] J. M. Kuo, “Nonlinear dynamic modeling with artificial neural net-
works,” Ph.D. dissertation, Univ. Florida, Gainesville, 1993.

MSE, which is the workhorse of supervised training. [22] D.G. Luenberget,inear and Nonlinear Programming Reading, MA:
Further work is needed to study the properties of the entrop}/2 . Addison-Wesley, 1973.

cost function for optimization and to find more robust ways to

J. C. Principe, N. Euliano, and C. Lefebvidgural and Adaptive Sys-
tems: Fundamentals Through SimulationdNew York: Wiley, 1999.

set the kernel size for the information potential estimation. Thg24] N. Anderson, P. Hall, and D. Titterington, “Two sample test statistics for
effect of noise in information-theoretic cost functions must also measuring discrepancies between two multivariate probability density

functions using kernel-based density estimataisMultivariate Anal,

be addressed. The issue of scalability of the information poten- ;| "5 . 41-54, 1994.
tial method with the size of the space will also be studied. Fi{25] C. Diks, J. Houwelingen, F. Takens, and J. deGoede, “Detecting dif-
nally, we have been applying the information potential method  ferences between delay vector distributiorf8iys. Rev. Bvol. 53, pp.

in many other problems (from blind source separation to pattern

2169-2176, 1996.

recognition) with very interesting and promising results [12],
[17]. These also provide an encouraging indication for the need

to further study this entropy estimator and its applications in re-
lated problems.
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