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Abstract. Second order statistics have formed the basis of learning and adaptation due to its
appeal and analytical simplicity. On the other hand, in many realistic engineering problems
requiring adaptive solutions, it is not sufficient to consider only the second order statistics of
the underlying distributions. Entropy, being the average information content of a distribution,
is a better-suited criterion for adaptation purposes, since it allows the designer to manipulate
the information content of the signals rather than merely their power. This paper introduces a
nonparametric estimator of Renyi’s entropy, which can be utilized in any adaptation scenario
where entropy plays a role. This nonparametric estimator leads to an interesting analogy
between learning and interacting particles in a potential field. It turns out that learning by
second order statistics is a special case of this interaction model for learning. We investi-
gate the mathematical properties of this nonparametric entropy estimator, provide batch and
stochastic gradient expressions for off-line and on-line adaptation, and illustrate the perform-
ance of the corresponding algorithms in examples of supervised and unsupervised training,
including time-series prediction and ICA.
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1. Introduction

The mean square error (MSE) has been the workhorse of optimal data fitting
models since the early work of Gauss in the 19th century. Both optimal linear
filtering and pattern recognition formulations have utilized extensively MSE
for very good reasons. In data fitting with the linear model, MSE yields a solu-
tion that is linear in the weights and can be analytically computed (the famous
least square method). Under the Gaussian assumption for the error, the MSE
provides the maximum likelihood solution, and so it has gained acceptance in
parameter estimation (Scharf 1990). The classical work of Wiener on optimal
filters in the MSE sense provided the theoretical framework (Wiener 1949)
and the stochastic gradient by Widrow (Widrow and Stearns 1985), which
gave rise to the LMS algorithm, tremendously decreased the computational
complexity of adapting filters, and more importantly opened new horizons for
adaptive systems.
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The MSE is also very popular in pattern recognition, in spite of the fact
that minimizing the power of the output error of a classifier does not guar-
antee in general minimal classification error (Fukunaga 1972). We know
today that minimizing the MSE at the output of a classifier provides an
estimate for the a posteriori probability of the class given the sample (Bishop
1995). Although the MSE approach has well-established properties for linear
systems in the case of Gaussian distributed signals, the shortcomings of the
method become evident in the nonlinear systems, non-Gaussian signals case
(Deco and Obradovic 1996). Under these circumstances, one needs an adapt-
ation criterion that utilizes the higher order statistical properties of the signal
under consideration.

The concept underlying the use of MSE in optimal system design is
very appealing. The error between the output of the system and a desired
response is a measure of mismatch; hence one should minimize the error
for optimal performance. A productive way is to minimize its variance, or
the error energy. The variance is intimately related to correlation, so MSE is
really only constraining the second order statistics of the error. Effectively,
to transfer all the information from the desired response to the parameters of
the mapper, we should constrain all the moments of the probability density
function of the error, i.e. we would like to make the error approach a delta
function distribution. When the error is assumed Gaussian, the minimization
of the variance (achieved with MSE) leads to the best possible solution.

When the error is not Gaussian, higher order moments of the probability
density function of the error should also be brought into play for optim-
ality. Entropy, defined as the average information content of a probability
distribution by Shannon (Shannon 1948), is a measure of uncertainty of the
underlying error distribution. Being the expectation of a function of the prob-
ability distribution, entropy inherently encompasses higher order statistics of
the density. Thus entropy is a suitable candidate for an adaptation criterion
to manipulate the information content of the signals rather than operating on
the second order statistics. Recently, Shannon’s entropy and mutual informa-
tion, Kullback-Leibler divergence, and other forms of higher order statistics
(e.g. kurtosis and higher order cumulants) have found their ways into the
adaptive systems literature in the context of independent components analysis
(ICA) and blind deconvolution (Lee et al. 1997; Hyvarinen 1999; Bell and
Sejnowski 1995; Comon 1994; Yang and Amari 1997).

When a Gaussian distribution appropriately models the error, Shannon’s
entropy still provides a manageable option for design, as the extensive
work in communication theory clearly demonstrates (Cover and Thomas
1991). Unfortunately, whenever nonlinear systems are the basis for system
modeling, the Gaussian assumption fails the realism test, and it has been
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difficult to apply Shannon’s definition of entropy as a criterion for adaptive
systems training without invoking the Gaussian assumption.

In this paper, we submit that Shannon’s definition is not always the
most appropriate choice for a given problem. In fact, by utilizing Renyi’s
parametric definition of entropy (or mutual information), which includes
Shannon’s definition as a special case, the designer gains extra freedom by
choosing the free parameter that is introduced into the scheme. Even more
importantly, Renyi’s definition of entropy leads to a practical estimator for
entropy directly from samples when combined with a Parzen estimator (i.e.
nonparametric estimator). Therefore, the MSE can be simply substituted by
the new entropy estimator in any practical problem. After working on this
problem for more than four years, we dare to say that Shannon’s definition of
entropy does not provide an intuitive understanding of what is gained when
using entropy instead of MSE for training an adaptive system.

Renyi’s entropy and mutual information are parametric families described
by (Renyi 1970)

Hα(X) = 1

1 − α
log

∫ ∞

−∞
f α
X(x)dx

Iα(X;Y ) = 1

α − 1
log

∫ ∞

−∞

∫ ∞

−∞
f α
XY (x, y)

f α−1
X (x) · f α−1

Y (y)
dxdy (1)

where X and Y are two random variables with the designated marginal and
joint probability density functions (pdf), and α is the order parameter. As can
be shown, using L’Hopital’s rule, the limit of Renyi’s definitions for entropy
and mutual information as α approaches to one yields Shannon’s definitions.
Hence, even though Renyi’s parametric entropy family has a discontinuity at
α = 1, one can approximate Shannon’s entropy arbitrarily close.

Finally, Renyi’s entropy provides a “physical analogy” for learning from
samples by means of an interaction model, which is increasing tremend-
ously our understanding about entropic learning. In fact, Renyi’s entropy
combined with the Parzen estimator in (Parzen 1967), computes interactions
among pairs of samples, which has analogies with physical potential fields
(and that we called an information potential in the context of information
theoretic learning (Principe et al. 2000)). Moreover, when further steps are
taken in order to obtain a stochastic approximation of the gradient vector for
sample-by-sample training purposes, the resulting expressions reveal invalu-
able insights about the relations between entropy training and the LMS
algorithm, and even the biologically plausible Hebbian learning. At this point
we can state that entropic learning with the information potential is the natural
extension for MSE learning in adaptive systems, because it extracts more
information from the data samples during the learning process.
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As the reader may already expect, this paper is intended as a review of
the fundamental concepts, so it will be light in the mathematics and will
emphasize understanding and relationship with more traditional concepts. For
a more in depth analysis, we provide the appropriate references.

2. Entropy estimator

In this section, a nonparametric estimator for Renyi’s entropy is derived, the
information potentials and information forces are defined and their role in
adaptation is pointed out. We start by writing the entropy definition in (1) in
a different way, using the expectation operator.

Hα(X) = 1

1 − α
logE[f α−1

X (X)] (2)

The Parzen window estimator [15] for the pdf fX(.) is evaluated using a
kernel function κσ (.), where σ is a parameter that controls the width of the
kernel function.

f̂X(x) = 1

N

N∑
i=1

κσ (x − xi) (3)

In the multidimensional pdf estimation case, this can be a vector or the covari-
ance matrix of the kernel function. In general, we suggest using joint kernels
of the type

κ�(x) =
n∏

o=1

κσo(x
o) (4)

where xo is the oth component of the input vector. This multi-dimensional
kernel used to estimate the joint pdf is equal to the product of single dimen-
sional kernels used for estimating the marginal pdfs. In this way, the joint pdf
estimation performed with this multi-dimensional kernel and the marginal
density estimates evaluated using the individual single-dimensional kernels
are consistent.

We can now replace the expected value in (2) by the sample mean and
obtain the following nonparametric estimator for Renyi’s entropy (Erdogmus
and Principe 2001; Erdogmus et al. 2002).

Hα(X) ≈ 1

1 − α
log

1

Nα

N∑
j=1

(
N∑
i=1

κσ (xj − xi)

)α−1

(5)
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This nonparametric estimator allows the designer to choose any entropy order
α and any kernel function. For the special choices of quadratic entropy (α =
2), and Gaussian kernels, (5) reduces to the estimator defined by Principe
except for a change in kernel size (Principe et al. 2000).

H2(X) ≈ − logV2(X)

V2(X) = 1

N2

N∑
j=1

N∑
i=1

Gσ
√

2(xj − xi) (6)

It is interesting to point out that this definition is achieved without any sample
approximations as in (5) due to the mathematical properties of the Gaussian
kernel. We therefore conclude in (Erdogmus et al. 2001) that for Renyi’s
entropy evaluation the additional variance introduced by the sample mean
approximation of the expected value operator can be exactly compensated by
a change of the shape and size of the kernel in the Parzen window.

The properties of Renyi’s entropy for estimation have been studied exten-
sively in the statistical literature (Renyi 1970). However, we are going to use
Renyi’s entropy in an adaptation framework, therefore the estimator in (5)
requires further study. The key concern is if the extrema locations of Renyi’s
entropy are preserved when (5) is used as an estimator. We have proven that
(Erdogmus and Principe 2001).

Theorem 1. If the kernel function κσ is a symmetric, continuous and differen-
tiable pdf, then the global minimum of the nonparametric entropy estimator
in (5) occurs when all samples xj are equal. Furthermore, this minimum is
smooth.

Proof: In (Erdogmus and Principe 2001), it was shown that the eigenvalues of
the Hessian matrix of (5) at the minimum point were strictly positive (except
for a single zero eigenvalue due to the fact that entropy is invariant to the
mean of the pdf) if the kernel is positive, its derivative is zero at zero, and its
second derivative is negative when evaluated at zero. A kernel as described
in the theorem satisfies all these conditions. This also proves the smoothness.
By comparing the value of (5) for an arbitrary set of samples to that of the
case where all the samples are identical, the global nature of the solution is
shown. �

3. Information particles and their potential

V2(X) in the quadratic entropy definition (6) was named the information
potential (Principe et al. 2000). The reason is the observation that V2(X)
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is a positive function monotonically decreasing with the distances between
the samples. Using an analogy to physics, the samples can then be thought
of as information particles in an information field. From (5) we obtain the
following nonparametric estimator of the information potential

Vα(X) =
∫

f α
X(x)dx ≈ 1

Nα

N∑
j=1

(
N∑
i=1

κσ (xj − xI )

)α−1

(7)

Having defined the information potential, we can then introduce the infor-
mation potential created by a single particle xj . Towards this goal, we will
use again the fact that the total potential energy of a system of particles is
a summation of the potential energies of the individual particles. Thus, the
potential for xj , parametrically dependent on the entropy order and the kernel
size as well as the kernel function itself, becomes

V̂α(xj ) − 1

Nα

(∑
i

κσ (xj − xi)

)α−1

(8)

From this, the definition of the information force acting on this particle
follows immediately. Recall that the force acting on a particle due to a poten-
tial field is calculated by taking the derivative of that field with respect to the
position of the particle. Following the same principle, the α-order information
force on xj is

Fα(xj ) = ∂V̂α(xj )

∂xj
= (α − 1)

Nα

(∑
i

κσ (xj − xi)

)α−2

∑

i �=j

κ ′
α(xj − xi)




= (α − 1)f̂ α−2
X (xj )F2(xj ) (9)

To obtain the closed form in the second line in (9), the sum of the kernels
is collected in the pdf estimate for the particle xj and the quadratic force is
defined as in Principe et al. (2000).

F2(xj ) = 1

N2


∑

i �=j

κ ′
σ (xj − xi)


 (10)

The choice of the kernel and the Renyi’s entropy order affect the interac-
tion among the information particles. Equation (9) is important because it
explains how the entropy order choice affects the behavior of the adaptation
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algorithm. As will be demonstrated later, the information forces are an essen-
tial component of the gradient (or the natural gradient (Amari 1998) if used)
and their behavior dominates the behavior of the gradient.

One can then ask what is the force component acting on a particle due to
another specific particle. Since forces are also additive, we can decompose
the quadratic force in (9) into its components composed of each element in
the summation and define the α-order information force acting on xj due to
particle xi as

Fα(xj ; xi) = (α − 1)f̂ α−2
e (xj )F2(xj ; xi) (11)

An interpretation of the results obtained here is in order. Consider the α-force
in (9). It is clear that for α > 2 the quadratic force is scaled up in magnitude
for samples in dense regions of the sample space as their density estimates
will have values greater than one. Similarly, for α < 2 the force acting on
samples in the sparse regions will be scaled up. Thus, it is possible to choose
the entropy order α to emphasize dense or sparse regions of the sample space,
which is linked to the kurtosis of the distributions. Choosing α = 2 will put
no emphasis on either region. In this respect the entropy order behaves as the
p in Lp Euclidean space norms.

The formulation that has been presented above develops entropic training
as a pair-wise interaction model among training samples. Notice that the
kernel function chosen determines the potential field that emanates from a
specific information particle, thus leading to the information force notion that
these particles exert on each other during adaptation. As expected from the
analogy formed between this framework and physics, these forces depend on
the relative locations of these particles with respect to each other.

Even more interesting, MSE can be shown to be a special case of this
framework. It is possible to regard the behavior of the adaptation algorithm
arising from the MSE criterion as an interaction between the training samples
and their sample mean. The following theorem states the equivalence between
MSE and quadratic entropy in the context of supervised training.

Theorem 2. If the kernel function satisfies the conditions in Theorem 1, then
minimizing the quadratic entropy expression given in (5) is equivalent to
minimizing the variance in the limit as the kernel size tends to infinity.

Proof: Recall that minimizing the quadratic entropy is equivalent to maxi-
mizing the quadratic information potential. Consider a second order truncated
Taylor series approximation to the kernel function, expanded around the
origin.
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κσ (ξ) ≈ κσ (0) + κ ′
σ (0)ξ + κ ′′

σ (0)ξ
2/2

= κσ (0) + κ ′′
σ (0)ξ

2/2 (12)

When a symmetric kernel as described in Theorem 1 is used the first order
derivative at the origin is zero, hence the corresponding term drops. Now
we substitute this second order approximation for the kernel in the quadratic
information potential and obtain

Vα(X) ≈ 1

N2

N∑
j=1

N∑
i=1

(κσ (0) + κ ′′
σ (0)(xj − xi)/2)

= κσ (0) + κ ′′
σ (0)/2


 1

N2

∑
j

∑
j

(x2
j − 2xjxi + x2

i )




= κσ (0) + κ ′′
σ (0) ·

(
x2 − x̄2

)
(13)

Since the second derivative of the kernel evaluated at zero is negative, maxi-
mizing the information potential shown above, estimated using a very large
kernel size (much larger than the dynamic range of the data), is equivalent to
minimizing the sample variance. In order to force the sample mean to zero, an
additional term involving the square of the sample mean could be introduced.
Note also that the information potential is a biased estimator for the MSE. �

This understanding highlights the unifying perspective brought by the
proposed particle interaction model as a novel model for learning from
examples, and leads to our conviction that the proposed entropy criterion
indeed exploits more information about the data set than second order
statistics.

4. Particle interaction model for learning

The equivalence between the sample entropy and the sample variance in the
limit of large kernels given in Theorem 2 brings the question of how potential
fields and forces look like when MSE (or rather the variance) is used as
the criterion. As we will see now, the interaction in the MSE case will be
between each individual sample and the sample mean, as if a collective (quad-
ratic) potential field is generated by a single particle located at the sample
mean. Consider the following maximization problem, which is nothing but
the minimization of the sample variance.

VMSE = −1

N

∑
i

(xi − x̄)2 (14)
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where x̄ denotes the sample mean. Conceiving this quantity as the total poten-
tial of the particle system, we can write the contribution of a single particle
as follows.

VMSE(xi; x̄) = −1

N
(xi − x̄)2 (15)

where the source of the potential field is the sample mean and the potential
of a particle depends on its (Euclidean) distance to the source. Generalizing
from this, at any point x, the potential is given by

VMSE(x; x̄) = −1

N
(x − x̄)2 (16)

Thus, the potential in the case of second order statistics is quadratic with
respect to the distance from the source. Now, let’s investigate the corres-
ponding force acting on a particle x. The force is naturally defined as the
derivative of the potential with respect to the position of the particle.

FMSE(x) = ∂VMSE(x)

∂x
= −2

N
(x − x̄) (17)

Now let’s consider the quadratic force in the case of a large kernel, where
the second order approximation in (12) is valid. In that case, the derivative
of the kernel can be approximated by a linear expression, explicitly given
by κ ′

σ (ξ) ≈ κ ′′
σ (0)ξ , therefore, the quadratic force in (10) approximately

becomes

F2(x) ≈ κ ′′
σ (0)

N
(x − x̄) (18)

which is in the same form as the force in (17).
Simulations for 4 information particles randomly located in a single

dimensional space are illustrated in Figure 1. The forces are plotted in the 1st
column and potentials are plotted in the second column. Figure 1a illustrates
the force field emanating from a single particle and Figure 1c depicts the
total force field at a given point as a superposition of the force fields due to
each individual particle. Figure 1b and 1d, similarly illustrate the individual
potential field due to a single particle as a function of the relative position
and the total potential of a particle at a given position. Note that, as the kernel
size increases, the information forces are better and better approximated by
a line in the dynamic range of the samples, thus becoming similar to MSE
(Figure 1c). Likewise, the total information potential (Figure 1d) becomes
better approximated by a quadratic polynomial in this range, becoming more
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Figure 1. Forces and ptentials as a function of position for different values of kernel size (a)
force due to a single particle (b) potential due to a single particle (c) overall force at a given
position (d) total potential at a given position.

and more similar to the potential field of MSE, which emanates from the
sample mean.

The basic difference between MSE and entropic learning is that, in the
second order statistics, the source of the potential (and hence the force) is the
sample mean, while in the entropy model each sample is a source itself. For
MSE, this corresponds to using an average model of the physical interactions
with the sample mean acting as a center of gravity originating an average
field, whereas for entropy each sample generates its own potential and force
field leading to an accurate and a complete model of the physical interactions
between all the particles. For these reasons, MSE algorithms can estimate the
forces one sample at a time, while for entropic learning pairwise interactions
are required.

Notice that if one aims at minimizing the entropy of the samples, the forces
are attractive (with a + sign due to maximization of information potential) and
pull the other particles towards the sample, thus minimizing the entropy and
increasing the potential energy of the system of particles. On the other hand,



BEYOND SECOND-ORDER STATISTICS FOR LEARNING 95

if entropy needs to be maximized, these forces become repulsive (due to the
– sign for minimization of potential) and the particles tend to spread to fill the
space.

5. Gradient of entropy

There are numerous possible applications where entropy can be used as the
optimization criterion to find the parameters w of a linear or nonlinear para-
metric mapper y = g(x,w). In such cases, the gradient of the cost function
will require the evaluation of the gradient of entropy. This can be written in
terms of the information forces as

∂Hα(X)

∂w
= 1

(1 − α)Vα(X)

∑
j

Fα(xj )Sw(xj ) (19)

where Sw(xj ) = dxj /dw is the sensitivity of the sample with respect to the
weight vector of the adaptive system under training. In addition, the infor-
mation potential can normally replace the entropy in the cost function, (as
in supervised training with minimum error entropy criterion or in maximiz-
ation of joint entropy as in the Bell & Sejnowski algorithm), therefore the
log can be dropped leaving the information potential as the cost function.
The gradient in this case, simplifies down to only the summation term given
in (19), eliminating the need to evaluate the information potential at every
iteration. Of course, one needs to be careful about the switching from a
maximization problem to a minimization problem or vice versa for values
of α > 1 or α < 1. In supervised training, the error samples constitute
the sample set used to evaluate the entropy and its gradient, whereas in
unsupervised learning schemes, the system output is directly used (Principe
et al. 2000). These samples can be single dimensional or multi-dimensional
depending on the system being trained.

6. Stochastic gradient

The drawback of the gradient algorithm in (19) is that it requires a double
summation and kernel evaluation operations which are O(N2), where N is
the number of samples. This complexity demands high computational band-
width and makes the information potential algorithm unattractive for on-line
learning situations involving time series. Motivated by this, and inspired
by Widrow’s stochastic gradient that led to the well-known LMS algorithm
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(Widrow and Stearns 1985; Haykin 1984), we derive a stochastic informa-
tion gradient (SIG) algorithm for the maximization/minimization of entropy.
Once again, we can derive two stochastic gradient algorithms, one for the
information potential, and one for the entropy itself. Detailed derivations of
these expressions are given in (Erdogmus and Principe 2001; Erdogmus et al.
2002; Hild II et al. 2001a). Here, we simply present the final results.

The SIG for the information potential basically consists of the kernel terms
evaluated at consecutive samples in time. Recall that in the batch gradient, all
possible pair-wise combinations of samples in the training set are considered
in evaluating the gradient. This simplification to concentrate only on the
forces between pairs of consecutive samples reduces the required computa-
tion effort significantly, and the algorithm becomes O(N). A gradient update
may be performed after accumulating and averaging L samples as shown in
(20) (

∂Vα

∂w

)
k

=

1

L

k∑
j=k−L+1

(1 − α)

Lα−1
Cj(α, σ )κ

′
σ (xj − xj−1)(Sw(xj ) − Sw(xj−1))(20)

where we define the coefficient

Cj(α, σ ) =
(∑

i

κσ (ej − ej−i )

)α−2

(21)

It can easily be shown that this stochastic gradient is an unbiased estimator
of the actual gradient that uses the whole data set (Erdogmus and Principe
2001). This conclusion can also be seen from the trivial fact that the stochastic
gradient in (20) is obtained by taking the derivative of the information poten-
tial with respect to the weights after dropping the expectation operator in its
definition.

Alternatively, a gradient update can be applied to the weights after every
sample. This corresponds to choosing L = 2 in (20). In that case, the SIG for
information potential becomes(

∂Vα

∂w

)
k

= (1 − α)

2α−1
Ck(α, σ )κ

′
σ (xk,−xk−1)(Sw(xk) − Sw(xk−1)) (22)

where the coefficient Ck(α, σ ) now becomes a single kernel evaluation
(Erdogmus and Principe 2001), and it is intrinsically sample by sample, just
like the LMS algorithm.
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The SIG algorithm for entropy, although similar in structure, reveals inter-
esting insights about entropic and Hebbian learning, which challenges our
current understanding of Hebbian synapses. In fact we show below that
using Donald’s Hebb’s definition of synaptic learning applied to innovations
instead of current values, an Hebbian synapse can estimate entropy instead
of correlation. The derivation is similar to that of the information potential
SIG, however, the information potential in the denominator of (19) is also
approximated by only differences of consecutive samples. This leads to the
following SIG for entropy(

∂Hα(X)

∂w

)
k

= 1

1 − α

(∂V̂α(y)/∂w)k

(V̂α(y))k

= κ ′
σ (xk − xk−1) · (Sw(xk) − Sw(xk−1))

κσ (xk − xk−1)
(23)

This SIG can be compactly written as

(
∂Hα(X)

∂w

)
k

= f (xk − xk−1) · (Sw(xk) − Sw(xk−1)) (24)

where Sw(xk) is the sensitivity of the output to the weight, and the nonlinear
function f (x) = −κ ′

σ (x)/κσ (x) regulates the magnitude of the gradient
according to the chosen kernel function, i.e. the interaction law between
particles. It is noteworthy that sign(f (x)) = sign(x) when kernels satisfying
the conditions in Theorem 1 are used. This property allows us to interpret the
gradient in (23) to adapt the weight w of a mapper, and therefore the corres-
ponding learning rule, as Hebbian (or anti-Hebbian). However, in entropic
learning, Hebb’s rule is not applied to the current value of the input and
output, but rather to the instantaneous differences (innovations) of the related
values. Specifically for the choice of Gaussian kernels and an ADALINE
structure (Widrow and Stearns 1985), the learning rule in (23) becomes

(
∂Hα(X)

∂w

)
k

= 1

σ 2
(xk − xk−1) · (uk − uk−1) (25)

where uk is the input vector at time k, and xk is the corresponding output.
This coincides with the generally accepted definition of Hebbian update rule,
only applied to the instantaneous differences (the innovations) instead of the
instantaneous values. It is well known that when an ADALINE is trained
with Hebbian rule, it can identify the direction of maximum variance in
the input space with its weights (Oja 1983). It is remarkable that when the
same network is trained using the entropy SIG given in (23), it can identify
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the direction of maximum entropy! Thus, one can implement information
theoretic learning using Hebbian updates (Erdogmus et al. 2002).

The gradient expression in (24) also applies, for example, to the super-
vised training of FIR filters by replacing the difference of output values with
the difference of error values at consecutive time instants. This algorithm
compared to the well known LMS, which only utilizes the product of the
current error value with the current input vector, takes into account the inter-
actions between the input vectors and error values at different time indices
(e.g. consecutive time indices), which encodes correlations at nonzero delays
as well as at zero delay. This property of the SIG algorithm can be exploited
as a regularization term in parallel with the LMS algorithm. It is known
that the step size of the LMS algorithm determines a trade-off between the
misadjustment and the tracking ability of the adaptive system (Haykin 1984).
While larger step sizes result in increased tracking ability, they also result
in a higher misadjustment due to weight updating solely dependent on the
current value of the error. At this point, we suggest using the SIG given in
(24) along with the regular LMS update, perhaps with a smaller weighting
factor, as a regularizer, which will prevent high magnitude fluctuations in the
weight space, thus decrease the size of the ripples in the tracking error. For
this, the following combined gradient expression must be utilized in adapting
the weights for an ADALINE or an FIR structure.

∇Jk = −2ekuk − λ(ek − ek−1)(uk − uk−1)/σ
2 (26)

where ek is the instantaneous error and 0 < λ < 1 is the regularization
coefficient that controls the influence of SIG in the overall adaptation of
the weights. This update rule, while tracking the changes in a nonstationary
environment by employing fast tracking LMS algorithm, will, in the mean,
regulate the fluctuations in the tracking error by controlling the difference
between consecutive error values. As a final comment, note that utilizing
the hybrid update rule proposed in (25) corresponds to employing a mixed
adaptation criterion that consists of a combination of MSE and error entropy,
both estimated stochastically from the most recent samples.

7. Applications of the entropy estimator to learning

In this section, we will demonstrate a number of applications where the
before-mentioned entropy estimator and the associated batch and stochastic
gradient algorithms may be employed. One of these applications is the substi-
tution of MSE with error entropy for prediction and system identification.
This is an application of entropy that has not been extensively studied in
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adaptive systems literature. Another example is a well-known problem where
entropy and other information theoretic measures are extensively utilized,
namely independent component analysis (ICA).

7.1 Error entropy minimization for prediction and system identification

Although most engineering applications can be reasonably treated using
linearity and Gaussianity assumptions, sometimes better models and
improved strategies are necessary. In such cases, it is advantageous to manip-
ulate the information content of signals rather than acting on merely the
second order or any fixed higher order statistics. Entropy, under these circum-
stances emerges as the natural choice. Suppose that the input-output mapping
of the adaptive system is defined by the parametric function y = g(x;w),
where w represents the adjustable weights of the system. In order to approx-
imate the target mapping using a finite number of input-output pairs and as
good as possible in the sense that the residual error carries minimal infor-
mation content, one needs to solve for the following optimization problem
for the error entropy where the error is defined as the difference between the
desired and actual outputs, i.e. e = d − y.

w∗ = arg min
w

Hα(e) (27)

It can be shown that minimizing Renyi’s error entropy of order α > 1
is equivalent to minimizing a Csiszar divergence between the joint densities
pdx(., .) and pyx(., .) as shown in (27) (Erdogmus and Principe 2001). Simi-
larly, equivalence can be established between minimizing Shannon’s error
entropy and the Kullback-Leibler divergence between these joint densities.
The interesting point is that the Csiszar divergence and the Kullback-Leibler
divergence are closely associated with the α-divergence defined by Amari
in the context of Riemannian structure of probability density function (pdf)
spaces (Amari 1985).

min
w

Hα(e) ≡ min
w

∫ ∫
pyx(y, x)

(
pdx(y, x)

pyx(y, x)

)1−α

dxdy (28)

Minimizing the error entropy minimizes the Riemannian distance (i.e. on
the geodesic of the nonlinear manifold) between the aforementioned joint
(therefore conditional) densities. Thus, the curved structure of this space
is fully considered by the information theoretic criterion (Erdogmus and
Principe 2001).

To illustrate this, consider the single-step prediction of the Mackey-Glass
chaotic time series using a TDNN with 6 inputs, 6 hidden neurons, with
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Figure 2. Pdf of desired output compared with pdfs of MLP outputs obtained by entropy and
MSE training. Adapted from (Erdogmus and Principe 2001).

tanh activation functions, and a single linear output neuron whose bias
term is adjusted to yield zero error mean. All other weights are adapted to
yield minimum error entropy over a training set of 200 samples. Training is
performed over 1000 random initial sets of weights and the best resulting
weights that yield the minimum entropy is selected. The performance of
the optimal weights is then tested on an independently generated 10000-
sample set. For comparison, the pdf fit obtained by the MSE criterion is
also presented (optimal weights selected after a similar training process)
(Erdogmus and Principe 2001). As observed in Figure 2, minimum error
entropy provides a better fit than MSE to the desired pdf, reminiscent of an
L1 norm fit.

As a second example, consider an ADALINE training problem, where
one aims to approximate the input-output mapping from a 1000-input vector
space to a single desired output time series. The input vector consists of 10
delayed values of 100 measuring probes surgically implanted in the motor
cortex of a monkey, whereas the desired output is the time series produced by
the current position of the monkey’s arm (one dimensional in this example).
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Figure 3. Desired filter output (solid) and the actual filter outputs using LMS (dot) and
LMS-SIG (dash).

The data was collected by the group of Dr. Nicolelis at Duke University
(Wessberg et al. 2000). In this high-dimensional problem, the compromise
between tracking ability and misadjustment has significant implications on
the performance of the filter. The same filter is trained using the normalized
LMS algorithm with a step size of 0.6, and also trained using the hybrid LMS
(normalized)-SIG algorithm, given in (25), using the same step size and the
regulation factor λ = 0.5. In Figure 3 the last 100 samples of a training set
of 10000 are presented. Clearly, the introduction of SIG into the update rule
leads to the reduction of over and undershoots, which results in a much better
estimate.

7.2 ICA via maximum entropy

The maximum entropy criterion for independent components analysis (ICA)
was first proposed by Bell & Sejnowski, and their algorithm, which is based
on Shannon’s entropy definition, became one of the benchmarks in ICA and
blind source separation (BSS) literature (Hyvarinen et al. 2001). The topology
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Figure 4. Samples (information particles) with the information forces acting on them (coded
as a voctor) in the 2-D output of the mapper (joint space).

used to separate the n independent components (in the square case) from the n

measurements consists of a single layer MLP with an n × n demixing matrix
followed by nonlinearities at each output channel, which are tuned to the
cumulative distribution functions (cdf) of the sources (independent compon-
ents). Maximizing the joint entropy after the nonlinearities will result in a
uniform distribution and the signals before the nonlinearities will have the
desired source densities; furthermore, they will be independent. It is a trivial
step to substitute Shannon’s joint entropy with Renyi’s joint entropy. In the
context of ICA/BSS via joint entropy maximization, the relevant optimization
problem that needs to be solved is as follows (for α > 1).

w∗ = arg max
W

Hα(y) = arg min
W

Vα(y) (29)

where Vα(y) is the information potential of the joint output density.
As an example, consider a 2-source separation problem. The scatter plot

of the samples after the nonlinearity with the information forces acting on
them during training looks like Figure 4. The information forces acting on
the information particles will guarantee that the joint output density tends to
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the uniform distibution. This pair-wise interaction model for ICA and also for
subspace projections was first proposed by Principe, Xu, and Fisher (Principe
et al. 2000; Fisher 1997; Xu 1999).

7.3 ICA via mutual information

Mutual information is a quantity that measures the dependence between
random variables and is minimized to achieve the value of zero when and
only when all the random variables are independent. There are ICA/BSS
algorithms that employ Shannon’s definition of mutual information directly
(Comon 1994; Yang and Amari 1997). Shannon’s mutual information
possesses a desirable additivity property with the joint and marginal entropies
of the random variables under consideration.

IS(y) =
n∑

o=1

HS(y
o) − HS(y) (30)

Comon exploits this property along with the invariance of the joint entropy
to rotations and proposes a two-stage algorithm, which consists of sphering
(spatial whitening) followed by an axes-rotation stage (Comon 1994). Since
joint entropy is constant under rotations, the cost function reduces to the sum
of marginal entropies. The advantages associated with this approach include
reduced number of adaptation parameters, elimination of nonlinearity tuning,
and avoidance of high dimensional entropy estimation.

Although Renyi’s mutual information and joint and marginal entropies
do not satisfy the equality presented in (29), the sum of Renyi’s marginal
entropies minus the joint entropy can still be used as a measure of dependence
(Hild II 2001). Thus, it is possible to perform ICA/BSS using the sphering-
rotation scheme along with the sum of Renyi’s marginal entropies for the
criterion. The advantage gained by doing so is investigated in (Erdogmus et
al. 2001), and it is shown that in fact Shannon’s entropy does not yield the
best separation for source distributions of different kurtosis values. In fact, for
super-Gaussian sources the suggested entropy order for optimal performance
is larger than two, while for sub-Gaussian sources the order is less than two,
although any order can be used. For mixed kurtosis cases, an entropy order of
two is suggested (Erdogmus et al. 2002). These recommendations have been
supported by experimentation over the generalized Gaussian distributions,
which have the following density function.

Gυ(x) = C · exp(−|x|υ/(υE[|x|υ ]) (31)

Here, ν controls the kurtosis of the density and splits the family into super-
Gaussian and sub-Gaussian distribution sets for the values (υ < 2) and (υ >

2), respectively.
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Figure 5. Separation performance vs iteration for various entropy orders and kernel function
choices in a BBS problem. Adapted form (Erdogmus et al. 2001).

For example, consider a two-speech-source separation example using
various values of entropy order and kernel function. The evolution of the
separation performance is depicted in Figure 5 as a function of iterations. As
the sources are both super-Gaussian, α = 5 achieves the best and fastest
learning of the separation matrix, whereas the other entropy orders also
perform satisfactorily (over 20dB). This example also illustrates that the
Gaussian kernel was a better match for this data set than the Cauchy kernel
(Erdogmus et al. 2002).

Now consider a 10-source separation problem, where the sources consist
of a musical piece, four female, and five male speakers. This example will
demonstrate how the pair-wise interaction model exploits the information
content in the data set efficiently compared to other methods. Clearly seen
from Figure 6, the pair-wise interaction model requires much less data points
to achieve the same level of separation performance of the other mehtods
(Hild II et al. 2001b).
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Figure 6. Comparison of data efficiency of minimization of Renyi’s mutual information
(MRMI) with Infomax, FastICA and Comon’s MMI algorithms. Final separation performance
vs number of training samples. Adapted from (Hild II et al. 2001).

The same argument can be stated for the stochastic gradient version of
this ICA algorithm (Erdogmus et al. 2002). In fact, when compared with the
Bell & Sejnowski (B&S) algorithm in a two-source separation example, there
is a drastic performance gap between the adaptation performances of these
two on-line ICA methods. As you can see in Figure 7, the SIG algorithm
converges to a satisfactory separation solution in less than half a second after
the speakers become active (the first 0.5 sec is silence, therefore there is no
adaptation). On the other side, it takes the B&S algorithm 8 seconds to reach
an acceptable separation level (Hild II et al. 2001).

8. Conclusions

Second order statistics have been satisfactory for many of the practical prob-
lems encountered in adaptive systems theory and therefore have long been
employed as adaptation and optimality criteria. Recent interest in challen-
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Figure 7. Convergence of MRMI-SIG compared with the Bell & Sejnowski algorithm in an
online separation environment. Separation performance vs number of data samples (8 KHz).

ging signal processing and adaptive systems problems have shown that it is
not always sufficient to consider second order statistics and in fact, higher
orders become a necessity (e.g. ICA). Entropy intrinsically represents higher
order statistics of a random variable; furthermore, it is appealing because
it represents the uncertainty and the average information of the underlying
random event. In this paper, we have reviewed some of the mathematical
properties of a nonparametric Renyi’s entropy estimator, which is specifically
designed for adaptation purposes. As Shannon’s entropy becomes a special
case of Renyi’s, the analysis also applies to Shannon’s entropy. The utiliz-
ation of Parzen windowing in the entropy estimator leads to an interesting
analogy between the emerging adaptation algorithms and particle interactions
in potential fields.

Since the nonparametric estimator uses a kernel pdf estimator, the
important problem of kernel size selection is addressed. The equivalence
between error entropy minimization in supervised learning and minimization
of the distance between pdfs of desired and output signals is theoretically
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shown and demonstrated in a time-series prediction example. A stochastic
gradient algorithm (SIG) for entropy manipulation is presented and the
performance of a hybrid training algorithm that combines the tracking capab-
ilities of LMS with the regularization properties of SIG is demonstrated on a
system identification problem. Finally, the efficient data usage of the entropy
estimator and the fast convergence of the associated stochastic gradient
algorithm are illustrated in a blind source separation example.

Acknowledgements

This work is partially supported by NSF grant ECS-9900394 and ONR
N00014-01-1-0405.

References

Amari S (1985) Differential–Geometrical Methods in Statistics. Springer-Verlag, Berlin
Amari S (1998) Natural gradient works efficiently in learning. Neural Computation 10: 251–

276
Bell A and Sejnowski T (1995) An information-maximization approach to blind separation

and blind deconvolution. Neural Computation 7: 1129–1159
Bishop C (1995) Neural Networks for Pattern Recognition. Clarendon Press, Oxford
Comon P (1994) Independent component analysis, a new concept? Signal Proc. 36: 287–314
Cover T and Thomas J (1991) Elements of Information Theory. John Wiley, New York
Deco G and Obradovic D (1996) An Information-Theoretic Approach to Neural Computing.

Springer, NY
Erdogmus D and Principe JC (2002) Generalized information potential criterion for adaptive

system training. To appear in IEEE Transactions on Neural Networks
Erdogmus D and Principe JC (2001) An on-line adaptation algorithm for adaptive system

training with minimum error entropy: Stochastic information gradient: 7–12, ICA
Erdogmus D, Hild II KE and Principe JC (2002) Blind Source Separation Using Renyi’s α-

Marginal Entropies. To appear in Neurocomputation
Erdogmus D, Hild II KE and Principe JC (2002) Do Hebbian synapses estimate entropy?

Submitted, NNSP
Fisher JW (1997) Nonlinear extensions to the minimum average correlation energy filter.

Ph.D. Dissertation, University of Florida
Fukunaga K (1972) An Introduction to Statistical Pattern Recognition. Academic Press, New

York, NY
Haykin S (1984) Introduction to Adaptive Filters. MacMillan, NY
Hild II KE, Erdogmus D and Principe JC blind source separation using renyi’s mutual

information. IEEE Signal Processing Letters 8: 174–176
Hild II KE, Erdogmus D and Principe JC (2001) On-line minimum mutual information method

for time-varying blind source separation: 126–131, ICA
Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component

analysis. IEEE Transactions on Neural Networks 10: 626–634.



108 DENIZ ERDOGMUS ET AL.

Hyvarinen A, Karhunen J and Oja E (2001) Independent Component Analysis. Wiley, New
York

Lee TW, Bell AJ and Orglmeister R (1997) Blind source separation of real world signals.
International Conference of Neural Networks 4: 2129–2134

Oja E (1983) Subspace Methods of Pattern Recognition. Wiley, New York
Parzen E (1967) On estimation of a probability density function and mode. In: Time Series

Analysis Papers. Holden-Day, Inc., CA
Principe JC, Xu D and Fisher JW (2000) Information theoretic learning. In: Haykin S (ed)

Unsupervised Adaptive Filtering, pp. 265–319. John Wiley & Son, New York
Renyi A (1970) Probability Theory. American Elsevier Publishing Company Inc., New York
Scharf LL (1990) Statistical Signal Processing: Detection, Estimation, and Time Series

Analysis. Addison Wesley, New York
Shannon CE (1948) A mathematical theory of communications. Bell Sys. T. J. 27: 379–423,

623–656
Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs

SJ, Srinivasan MA, Nicolelis MAL (2000) Real-time prediction of hand trajectory by
ensembles of cortical neurons in primates. Nature 408: 361–365

Widrow B and Stearns SD (1985) Adaptive Signal Processing. Prentice Hall, NJ
Wiener N (1949) Extrapolation, Interpolation, and Smoothing of Stationary Time Series with

Engineering Applications. MIT Press, Cambridge, MA
Xu D (1999) Energy, entropy, and information potential for neural computation. Ph.D.

Dissertation, University of Florida
Yang H and Amari S (1997) Adaptive online learning algorithms for blind separation:

maximum entropy and minimum mutual information. Neural Computation 9: 1457–1482


