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ABSTRACT a reasonable parametric model family is difficult to select f
We present a polytope-kernel density estimation (PKDEYata distributions that are complicated, especially fghhi
methodology that allows us to perform exact mean-shift updimensional data; consequently, techniques that focus on
dates along the edges of the Delaunay graph of the data. WW®nparametric techniques such as kernel machines, orlkerne
discuss explicit and implicit constructions of such a PKDE,density estimation, as well as those that utilize neighbodh
where in the implicit construction one can exploit a smoothegraph constraints (which are similar in spirit to our progdos
kernel such as the standard isotropic Gaussian. The mggultiin this paper) have been preferred and achieved successful
density estimate allows us to perform mean-shift clustgirin  results in clustering and dimension reduction.
a computationally efficient manner (similar to mediod ghift e note that not all densities will have globally smooth
but in a manner that is exact and consistent with the underlyynderlying manifolds that can be nicely unwrapped or pro-
ing density assumption. The procedure also yields a hierajacted onto a corresponding Euclidean space; consider for
chical connectivity structure, a tree, that spans the éatiée  jnstance a mixture of two elongated Gaussians that are po-
demonstrate how this tree, combined with density-weighteditioned and oriented to form a 'T' shape in 2-dimensional
geodesic distance calculations between modal samples cgface - intuitively the best 1-dimensional approximatiateg
be used to select number of clusters as well as a distangg one would obtain, for instance using local PCA, con-

preserving dimension reduction technique. sists of two separate (approximately) linear 1-dimendiona
_Index Terms— Polytope kernel density estimation, meansegments [4]. Consequently, we assert that underlying low
shift clustering dimensional manifolds for an arbitrary data distribution i
1. INTRODUCTION general exhibit a segmented piecewise nonlinear and smooth

Manifold learing has been extensively studied [1, 2, 3, 4]structure that can be extracted from a graph (or in some cases

and the fundamental underlying mathematical problem haS> & VEry gpod approxmahon, gtrge_structure)._ In th'.s hape
reincarnated many times over the last four decades in the foralong this line of reasoning, which is illustrated in ourlear

of least orthogonal error least squares regression, nmageli work [4], WE propose a local to global tree-structured tepol_
with errors-in-variables, principal surfaces, and naedin ogy extraction technique based on a polytope kernel density

principal components. The goal is to determine a representgsnmate (PKDE) framework that establishes pairwise data

tion of a randomly distributed possibly high dimensionakda connec_tions that are _sig_nific_:ant in te_rms of the geor_netw of
with a probability distribution that is tightly concenteat on the estimated da'Fa distribution, no.t Just_EucI|Qean dmgn

a low-dimensional (piecewise) smooth surface, the sedall between data pairs. The formulation gives rise to a hierar-
underlying manifold of the data distribution. The solution chical local cluster representation that can be obtaineal in
this problem can be utilized in tackling many fundamental_cozcnpm"’lt'on‘lf’m_y ef{:merrl]t mpalgggfsmllalr o mledI(()jd-srﬂ};[_
statistical inference and machine learning problems ahclu In fact, we claim that t e = formu at|on_ eads to ang-
ing clustering, dimensionality reduction, signal denugsi orous derivation of mediod-shift as a clustering technigsie
and nonlinear warping for registration or coordinate align isotropic Gaussian-KDE (GKDE) leads to mean-shift (MS)

ment. Typical methods for determining the optimal manifold(:lus't,e.rmg [6, 71 'I_'he local cluster.sf are connec.ted through
utilize minimum mean-squared-error (MSE) type objective?® MiniMum spanning tree that utilizes geodesics between
modes (central points that represent the cluster peaks).

functions. For instance, linear principal component asialy
(PCA) yields a mininum-MSE hyperplane as the optimal ~ Therefore, the contributions of this paper are two-folyi: (i
underlying manifold, which makes geometrical sense wheie introduce PKDE as a methodology to approximately ex-
the underlying data distribution is elliptically symmetri tract underlying cluster and manifold structure, (i) and w
such as a Gaussian with anisotropic covariance. In generdifesent a fast MS algorithm based on PKDE (which leads to
This work is supported by NSF under grants ECCS0929576 pigcewise linear denSity approximations) and linear [ogr

ECCS0034506, 1150934509, 1150914808, and BCS1027724.0pfrdons 119" We leave extensive treatment of how to use the PKDE
presented here are solely those of the authors and do natsaeitg reflect  10F manifold learning with higher dimensions to future work
the opinions of the funding agency. for lack of space.




2. POLYTOPE KERNEL DENSITY ESTIMATION kernel, following usual convention, is constructed to hise

MS is a popular and successful clustering technique thai€ak value ak and has lineafaces on simplexes that connect
suffers from high computational complexity; various sim-X 0 each_subset oi_ points in thee_-ball set defined f_:lbove.
plifications have been investigated including finite-suppo COomputational details and equations for constructingethes
kernels and space discretization [6, 8, 7, 9, 5, 10]. As opkernels will be mcluQed in thejournql extension o.f papee du
posed to existing techniques that typically start from a—contf) lack of space. This process describes the explicit cotstr
tinuously differentiable KDE (such as a GKDE), we proposetion of D0|_yt0pe kernels Igadmg to a PKDE when used as
an MS variant that assumes a PKDE based on the use §fual, setting to 3 or 5, for instance.
finite-support polytope-shaped kernels (basically pydsmi Alternatively, in an implicit polytope kernel selection-ap
with convex po|ygon bases in data Space) whose Supporﬂj'oa.Ch, one could construct the Delaunay graph as well as
are determined by the Delaunay graph that spans the daggnooth density estimate (for instance a GMM or a KDE us-
points. Artificial edges resulting from boundary data psint ing & smooth kernel such as Gaussian). Then the smooth den-
are eliminated by deleting the edges that are on the convegity can be sampled at the data points and for each point, for
hull boundary of the whole dataset. This process partition§ach data point, the density could be linearly approximated
the data space into simplexes in which the probability dgnsi Within each simplex formed by a given data point andf
is approximated as a linear surface; therefore a hill-diigb  its adjacent neighbors in the graph (doing this for every
procedure for each data point can be obtained by solvinglement neighbor subset) by determining the linear functio
multiple linear programs (linear density to be maximizedthat satisfies the sample values at the data points. Interior
within a simplex-shaped feasible set) and then selectiag thof the simplex in question can be spanned by a convex lin-
best solution for each data point (vertices of the simplexesear combination of its vertices and the linear approxinmatio
across all simplexes it belongs to. This reduces to commgcti i given by the same weighted linear combination of sampled
each data point to its highest density neighbor in the Desmooth KDE values at the vertices. The implicit method has
launay graph. This process yields a clustering solution anfvo apparent advantages: (1) it approximates a smooth KDE
a tree-structured hill-climbing connectivity map that spa in a piece-wise fashion so spurious peaks are less likely to
each cluster. A global cluster spanning tree that connbets t emerge (important for MS clustering), (2) these are easier
modes using paths along the Delaunay graph is then obtainé@ understand intuitively - although for each implicit PKDE
using a density-geodesic concept [11]. there is a corresponding polytope kernel selection prameds
For the described linear program based MS clusterin§"e could have qbtained the same result following 'th.e eiXpIip
approach to work, we need a piecewise-linear KDE define@focedure described above. Figure 1 shows explicit and im-
on simplexes forming a partition of the data support (e.gPlicit PKDE models for a Gaussian sample.
convex hull). Such a KDE can be obtained by employing
polytope kernels. While in general data points do not have 3. CLUSTERING BY LINEAR PROGRAMS
to be vertices of the simplexes and polytope suppertsll  Given a PKDE, we obtain a density model that is picewise
graphs have been found to be useful in practice when usinear on simplexes whose vertices are data points, if one of
ing Euclidean distances; consequently, we employ thisgusinthe two strategies mentioned above is used. If a simflax
graph-geodesic distances over Delaunay graphs of the datefined byn + 1 data points im—dimensions, the density for
The Delaunay graph is obtained by finding the Voronoi para pointx € S ¢ R is given byp(x) = wx+b. For a given
tition of the data space and connecting data (nodes) whosgmplex, the linear programax, p(x)subjecttox € S finds
Voronoi cells share a boundary with an edge. In order tahe vertex with the highest density value; consequently, fo
eliminate possible inter-cluster edges that could form beall other vertices, which are data points, a good hill-clingo
tween samples of clusters with different scales, we deleteandidate is given by the adjacent data point on the simplex
edges connecting a data point to its neighbors if this actiowith largest value. In practice we don’t need to solve linear
improves theuniformity of edge lengths (measured by using programs; the MS update simply becomes finding for each
entropy of edge lengths after normalization to unit sum andjata point, among its adjacent neighbors on the Delaunay
treating them as probability masses). graph constructed as described above, the one that has the
We propose to utilize variable-width polytope kernels; alargest probability density value according to PKDE. Mdst o
polytope-kernel centered at a data point R™ is a pdf that  the time, we expect that the maximal value in each linear pro-
has bounded support on andimensional polytope whose gram is achieved by only one vertex$f Two possible prob-
vertices, edges, and (hyper-) surfaces are defined by tioé¢ setiematic cases are: (3’ e = 0, wheree is the vector parallel
pointsyl,i = 1, ..., K that are withinc € Z distance fromx  to the edge on which the maximum density is achieved - two
on the Delaunay graph and the graph edges that connect thestices on this edge are both possible choices for the iter-
points to each other (i.e. the convex hull of these pointee T ation; (2)w = 0, which yields a constant value of density
neighborhoods are obtained by employing a shortest path akithin the simplex - thus all vertices are possible solution
gorithm [12] on the graph assuming unit edge lengths. Th®ther problematic cases between these two extremes exist.



One potential remedy is to chose the iteration for the ctirrersamples andj can be calculated analytically:
data in question such that the selected iterated vertexithen

1
erates itself to a larger density value. dij = & — ] / #dt
t
This procedure creates a hierarchical tree structurenvithi 0 p(f( ) '
each mode where each data is connected to a parent data via = ||zi — 24| ln(p(xf) ). (1)
the edge that it follows while solving the LP problems in its p(xj) —plxi) " p(x)

vicinity. Consequently, the algorithm requires only one it A a result, the density-weighted geodesic distance betwee
eration per sample - and that iteration is quite simple: ggwo cluster modes can be given Bedge, cc dij WhereC

to the neighbor with the largest density. Similar ideas havgs the shortest path between the modes calculated on the
been explored in the MS literature [9, 5, 10]. Unlike prewiou edge graph with weights as the length penalized harmonic
methods, since our approach utilizes piecewise lineaasesf  density averages [12]. The pairwise mode distances ob-
as density estimates, updates emerging from the formulategined above form a fully connected pairwise distance graph
problem are not approximates for gradient but exact MS iterhetween the modes, which are subjected to a Minimum Span-
ations constrained to the given graph. Clearly, the rootanodning Tree (MST) search algorithm [13] in order to obtain a
of each cluster’s tree will naturally be the data with thethig tree-structured sparse connectivity graph between thesod
estdensity in that cluster. Furthermore, since the streéiia  thys creating a planar (but one-dimensional in local stmet
tree, one can utilize the tree to constrain the pairwisedss global atlas of coordinates for the data.

to be maintained in dimension reduction approaches such as Figure 1(e-f) show clustering results obtained using ex-
LLE or ISOMAP [3, 1] in order to obtain a two-dimensional pjicit and implicit polytope kernels (from GKDE in the latje
projection of the data for visualization or compression-pur The modes are connected via MST as described above using
poses (since a tree is a planar graph). The same will be tryge harmonic density average-weighted edge lengths in (1).
for the general tree structure that we fit to the data globallyeach color represents a cluster with black curves repriesent
details will be in the next section. Specifically, we will iy the tree that spans the cluster modes. Overall, the MST that
learn the global topology of clusters and their principabes  connects the modes globally, and then the hierarchicaeslus
using shortest paths between modes and minimum spannifges within each modal cluster reveal a global tree stractu
trees that traverse the modes of each cluster. for the data, and since trees are planar graphs, this tréé cou
be used to reduce the dimensionality of the data to 2 from
n using an algorithm like LLE where the local pairwise dis-
tances to be preserved during optimization are limited ¢o th
neighbor pairs in the data tree; thus the low dimensiona dat
maintains the same tree structure as well. In this paperowe d

MS clustering is known to yield over-segmentation restlts j N0t investigate this extension further.

the KDE generates many peaks. Mode-merging is a success- 5. RESULTS

ful modal order control technique if used properly. Inety, \ve jllustrate clustering results on two other synthetic §au
if the ridge (principal curve according to our definition [4] sjan mixturesII-shaped dataset consists of 5 cascaded elon-
connecting two modes do not drop in value too much (Minyated Gaussians. Each component has 1000 samples with
imum on the ridge occurs on the saddle point for a smootijiagonal covariance with eigenspread 4. Figure 2(a) illus-
KDE), then the modes could be merged into a single Clusyrates the algorithm output for this dataset. Second syiathe
ter since, very likely, the presence of two modes as 0pposeghtaset consists of a Gaussian mixture forming a tree with 9
to one is a statistical anomaly due to finite sample size. FO5ranches connected at four 3-way bifurcation points. Mid-
PKDE, first and second order derivatives are not well definee pranches consist of two Gaussian components making the
(generalizations exist for nonsmooth functions and we Willpixture have 12 components where each one has 200 sam-
investigate these in the future); consequently, we employ Bles with an eigenspread of 4 again. The underlying pdf is
inverse-density-weighted geodesic distance approacieto destimated with GMM using expectation-maximization, where
cide whether two modes should be merged or not [11]. the number of components is selected as the number of actual
In particular, the weight of each edge in the Delaunaycomponents. Figure 2(b) illustrates the algorithm resnlt o
graph is taken as a monotonic function of the generalizethis dataset. We applied the proposed method to grayscale

mean of the density along the edge multiplied by the Euimage clustering using pixel coordinate and intensityfeat
clidean length of the edge in the data spade= ||z; —  Vectors. The benchmark cameraman iamge, with 50x50 size

z;||h! wag. M(p(x)). Specifically, we utilize the function is used and segmentation results are shown in Figure 5. Ker-
h(a) = 1’/a,‘ which corresponds to the harmonic mean, but'e! width of the Gaussian kernel density estimate is mayuall
other choices are possible. For the case of linear edges afi§lected to obtain the desired number of clusters.

linear densities along the edge, thiistance between data 10ne could find the shortebarmonic distance instead afrithmetic.

4. MINIMUM SPANNING TREES TO MERGE
CLUSTER INDUCED CHARTS INTO AN ATLAS




(d)

[ g Fig. 3. Image segmentation results: (a) Original image,
(b) 5-cluster output using the proposed algorithm, (c) 6-

cluster output using the proposed algorithm, (d) Corredpon

©) ® @ W) ing Gaussian-KDE mean-shift result with 6 clusters.

Fig. 1. Synthetic dataset composed of mixture of 3 Gaus-

sians: (a) GMM samples, (b) Delaunay graph after deletingween modes.
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