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ABSTRACT
We present a polytope-kernel density estimation (PKDE)
methodology that allows us to perform exact mean-shift up-
dates along the edges of the Delaunay graph of the data. We
discuss explicit and implicit constructions of such a PKDE,
where in the implicit construction one can exploit a smoother
kernel such as the standard isotropic Gaussian. The resulting
density estimate allows us to perform mean-shift clustering in
a computationally efficient manner (similar to mediod shift),
but in a manner that is exact and consistent with the underly-
ing density assumption. The procedure also yields a hierar-
chical connectivity structure, a tree, that spans the dataset. We
demonstrate how this tree, combined with density-weighted
geodesic distance calculations between modal samples can
be used to select number of clusters as well as a distance
preserving dimension reduction technique.

Index Terms— Polytope kernel density estimation, mean
shift clustering

1. INTRODUCTION
Manifold learning has been extensively studied [1, 2, 3, 4]
and the fundamental underlying mathematical problem has
reincarnated many times over the last four decades in the form
of least orthogonal error least squares regression, modeling
with errors-in-variables, principal surfaces, and nonlinear
principal components. The goal is to determine a representa-
tion of a randomly distributed possibly high dimensional data
with a probability distribution that is tightly concentrated on
a low-dimensional (piecewise) smooth surface, the so-called
underlying manifold of the data distribution. The solutionto
this problem can be utilized in tackling many fundamental
statistical inference and machine learning problems includ-
ing clustering, dimensionality reduction, signal denoising,
and nonlinear warping for registration or coordinate align-
ment. Typical methods for determining the optimal manifold
utilize minimum mean-squared-error (MSE) type objective
functions. For instance, linear principal component analysis
(PCA) yields a minimum-MSE hyperplane as the optimal
underlying manifold, which makes geometrical sense when
the underlying data distribution is elliptically symmetric,
such as a Gaussian with anisotropic covariance. In general,
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a reasonable parametric model family is difficult to select for
data distributions that are complicated, especially for high
dimensional data; consequently, techniques that focus on
nonparametric techniques such as kernel machines, or kernel
density estimation, as well as those that utilize neighborhood
graph constraints (which are similar in spirit to our proposal
in this paper) have been preferred and achieved successful
results in clustering and dimension reduction.

We note that not all densities will have globally smooth
underlying manifolds that can be nicely unwrapped or pro-
jected onto a corresponding Euclidean space; consider for
instance a mixture of two elongated Gaussians that are po-
sitioned and oriented to form a ’T’ shape in 2-dimensional
space - intuitively the best 1-dimensional approximation data,
as one would obtain, for instance using local PCA, con-
sists of two separate (approximately) linear 1-dimensional
segments [4]. Consequently, we assert that underlying low
dimensional manifolds for an arbitrary data distribution in
general exhibit a segmented piecewise nonlinear and smooth
structure that can be extracted from a graph (or in some cases,
as a very good approximation, a tree structure). In this paper,
along this line of reasoning, which is illustrated in our earlier
work [4], we propose a local to global tree-structured topol-
ogy extraction technique based on a polytope kernel density
estimate (PKDE) framework that establishes pairwise data
connections that are significant in terms of the geometry of
the estimated data distribution, not just Euclidean distances
between data pairs. The formulation gives rise to a hierar-
chical local cluster representation that can be obtained ina
computationally efficient manner similar to mediod-shift [5];
in fact, we claim that the PKDE formulation leads to a rig-
orous derivation of mediod-shift as a clustering techniqueas
isotropic Gaussian-KDE (GKDE) leads to mean-shift (MS)
clustering [6, 7]. The local clusters are connected through
a minimum spanning tree that utilizes geodesics between
modes (central points that represent the cluster peaks).

Therefore, the contributions of this paper are two-fold: (i)
we introduce PKDE as a methodology to approximately ex-
tract underlying cluster and manifold structure, (ii) and we
present a fast MS algorithm based on PKDE (which leads to
piecewise linear density approximations) and linear program-
ming. We leave extensive treatment of how to use the PKDE
for manifold learning with higher dimensions to future work
for lack of space.



2. POLYTOPE KERNEL DENSITY ESTIMATION

MS is a popular and successful clustering technique that
suffers from high computational complexity; various sim-
plifications have been investigated including finite-support
kernels and space discretization [6, 8, 7, 9, 5, 10]. As op-
posed to existing techniques that typically start from a con-
tinuously differentiable KDE (such as a GKDE), we propose
an MS variant that assumes a PKDE based on the use of
finite-support polytope-shaped kernels (basically pyramids
with convex polygon bases in data space) whose supports
are determined by the Delaunay graph that spans the data
points. Artificial edges resulting from boundary data points
are eliminated by deleting the edges that are on the convex-
hull boundary of the whole dataset. This process partitions
the data space into simplexes in which the probability density
is approximated as a linear surface; therefore a hill-climbing
procedure for each data point can be obtained by solving
multiple linear programs (linear density to be maximized
within a simplex-shaped feasible set) and then selecting the
best solution for each data point (vertices of the simplexes)
across all simplexes it belongs to. This reduces to connecting
each data point to its highest density neighbor in the De-
launay graph. This process yields a clustering solution and
a tree-structured hill-climbing connectivity map that spans
each cluster. A global cluster spanning tree that connects the
modes using paths along the Delaunay graph is then obtained
using a density-geodesic concept [11].

For the described linear program based MS clustering
approach to work, we need a piecewise-linear KDE defined
on simplexes forming a partition of the data support (e.g.
convex hull). Such a KDE can be obtained by employing
polytope kernels. While in general data points do not have
to be vertices of the simplexes and polytope supports,ǫ-ball
graphs have been found to be useful in practice when us-
ing Euclidean distances; consequently, we employ this using
graph-geodesic distances over Delaunay graphs of the data.
The Delaunay graph is obtained by finding the Voronoi par-
tition of the data space and connecting data (nodes) whose
Voronoi cells share a boundary with an edge. In order to
eliminate possible inter-cluster edges that could form be-
tween samples of clusters with different scales, we delete
edges connecting a data point to its neighbors if this action
improves theuniformity of edge lengths (measured by using
entropy of edge lengths after normalization to unit sum and
treating them as probability masses).

We propose to utilize variable-width polytope kernels; a
polytope-kernel centered at a data pointx ∈ R

n is a pdf that
has bounded support on ann-dimensional polytope whose
vertices, edges, and (hyper-) surfaces are defined by the setof
pointsyi

x
, i = 1, ...,K that are withinǫ ∈ Z distance fromx

on the Delaunay graph and the graph edges that connect these
points to each other (i.e. the convex hull of these points). The
neighborhoods are obtained by employing a shortest path al-
gorithm [12] on the graph assuming unit edge lengths. The

kernel, following usual convention, is constructed to haveits
peak value atx and has linearfaces on simplexes that connect
x to each subset ofn points in theǫ-ball set defined above.
Computational details and equations for constructing these
kernels will be included in the journal extension of paper due
to lack of space. This process describes the explicit construc-
tion of polytope kernels leading to a PKDE when used as
usual, settingǫ to 3 or 5, for instance.

Alternatively, in an implicit polytope kernel selection ap-
proach, one could construct the Delaunay graph as well as
smooth density estimate (for instance a GMM or a KDE us-
ing a smooth kernel such as Gaussian). Then the smooth den-
sity can be sampled at the data points and for each point, for
each data point, the density could be linearly approximated
within each simplex formed by a given data point andn of
its adjacent neighbors in the graph (doing this for everyn-
element neighbor subset) by determining the linear function
that satisfies the sample values at the data points. Interior
of the simplex in question can be spanned by a convex lin-
ear combination of its vertices and the linear approximation
is given by the same weighted linear combination of sampled
smooth KDE values at the vertices. The implicit method has
two apparent advantages: (1) it approximates a smooth KDE
in a piece-wise fashion so spurious peaks are less likely to
emerge (important for MS clustering), (2) these are easier
to understand intuitively - although for each implicit PKDE
there is a corresponding polytope kernel selection processand
one could have obtained the same result following the explicit
procedure described above. Figure 1 shows explicit and im-
plicit PKDE models for a Gaussian sample.

3. CLUSTERING BY LINEAR PROGRAMS

Given a PKDE, we obtain a density model that is picewise
linear on simplexes whose vertices are data points, if one of
the two strategies mentioned above is used. If a simplexS is
defined byn + 1 data points inn–dimensions, the density for
a pointx ∈ S ⊂ R

d is given byp(x) = wT x+b. For a given
simplex, the linear programmaxx p(x)subjecttox ∈ S finds
the vertex with the highest density value; consequently, for
all other vertices, which are data points, a good hill-climbing
candidate is given by the adjacent data point on the simplex
with largest value. In practice we don’t need to solve linear
programs; the MS update simply becomes finding for each
data point, among its adjacent neighbors on the Delaunay
graph constructed as described above, the one that has the
largest probability density value according to PKDE. Most of
the time, we expect that the maximal value in each linear pro-
gram is achieved by only one vertex ofS. Two possible prob-
lematic cases are: (1)wT e = 0, wheree is the vector parallel
to the edge on which the maximum density is achieved - two
vertices on this edge are both possible choices for the iter-
ation; (2)w = 0, which yields a constant value of density
within the simplex - thus all vertices are possible solutions.
Other problematic cases between these two extremes exist.



One potential remedy is to chose the iteration for the current
data in question such that the selected iterated vertex thenit-
erates itself to a larger density value.

This procedure creates a hierarchical tree structure within
each mode where each data is connected to a parent data via
the edge that it follows while solving the LP problems in its
vicinity. Consequently, the algorithm requires only one it-
eration per sample - and that iteration is quite simple: go
to the neighbor with the largest density. Similar ideas have
been explored in the MS literature [9, 5, 10]. Unlike previous
methods, since our approach utilizes piecewise linear surfaces
as density estimates, updates emerging from the formulated
problem are not approximates for gradient but exact MS iter-
ations constrained to the given graph. Clearly, the root node
of each cluster’s tree will naturally be the data with the high-
est density in that cluster. Furthermore, since the structure is a
tree, one can utilize the tree to constrain the pairwise distances
to be maintained in dimension reduction approaches such as
LLE or ISOMAP [3, 1] in order to obtain a two-dimensional
projection of the data for visualization or compression pur-
poses (since a tree is a planar graph). The same will be true
for the general tree structure that we fit to the data globally;
details will be in the next section. Specifically, we will tryto
learn the global topology of clusters and their principal curves
using shortest paths between modes and minimum spanning
trees that traverse the modes of each cluster.

4. MINIMUM SPANNING TREES TO MERGE
CLUSTER INDUCED CHARTS INTO AN ATLAS

MS clustering is known to yield over-segmentation results if
the KDE generates many peaks. Mode-merging is a success-
ful modal order control technique if used properly. Intuitively,
if the ridge (principal curve according to our definition [4]
connecting two modes do not drop in value too much (min-
imum on the ridge occurs on the saddle point for a smooth
KDE), then the modes could be merged into a single clus-
ter since, very likely, the presence of two modes as opposed
to one is a statistical anomaly due to finite sample size. For
PKDE, first and second order derivatives are not well defined
(generalizations exist for nonsmooth functions and we will
investigate these in the future); consequently, we employ a
inverse-density-weighted geodesic distance approach to de-
cide whether two modes should be merged or not [11].

In particular, the weight of each edge in the Delaunay
graph is taken as a monotonic function of the generalized
mean of the density along the edge multiplied by the Eu-
clidean length of the edge in the data space:d = ||xi −
xj ||h

−1
∫

edge
h(p(x)). Specifically, we utilize the function

h(a) = 1/a, which corresponds to the harmonic mean, but
other choices are possible. For the case of linear edges and
linear densities along the edge, thisdistance between data

samplesi andj can be calculated analytically:

dij = ||xi − xj ||

∫
1

0

1

p(x(t))
dt

= ||xi − xj ||
1

p(xj) − p(xi)
ln(

p(xj)

p(xi)
). (1)

As a result, the density-weighted geodesic distance between
two cluster modes can be given as

∑
edgeij∈C dij whereC

is the shortest path between the modes calculated on the
edge graph with weights as the length penalized harmonic
density averages [12].1 The pairwise mode distances ob-
tained above form a fully connected pairwise distance graph
between the modes, which are subjected to a Minimum Span-
ning Tree (MST) search algorithm [13] in order to obtain a
tree-structured sparse connectivity graph between the modes,
thus creating a planar (but one-dimensional in local structure)
global atlas of coordinates for the data.

Figure 1(e-f) show clustering results obtained using ex-
plicit and implicit polytope kernels (from GKDE in the latter).
The modes are connected via MST as described above using
the harmonic density average-weighted edge lengths in (1).
Each color represents a cluster with black curves representing
the tree that spans the cluster modes. Overall, the MST that
connects the modes globally, and then the hierarchical cluster
trees within each modal cluster reveal a global tree structure
for the data, and since trees are planar graphs, this tree could
be used to reduce the dimensionality of the data to 2 from
n using an algorithm like LLE where the local pairwise dis-
tances to be preserved during optimization are limited to the
neighbor pairs in the data tree; thus the low dimensional data
maintains the same tree structure as well. In this paper, we do
not investigate this extension further.

5. RESULTS
We illustrate clustering results on two other synthetic Gaus-
sian mixtures.Π-shaped dataset consists of 5 cascaded elon-
gated Gaussians. Each component has 1000 samples with
diagonal covariance with eigenspread 4. Figure 2(a) illus-
trates the algorithm output for this dataset. Second synthetic
dataset consists of a Gaussian mixture forming a tree with 9
branches connected at four 3-way bifurcation points. Mid-
dle branches consist of two Gaussian components making the
mixture have 12 components where each one has 200 sam-
ples with an eigenspread of 4 again. The underlying pdf is
estimated with GMM using expectation-maximization, where
the number of components is selected as the number of actual
components. Figure 2(b) illustrates the algorithm result on
this dataset. We applied the proposed method to grayscale
image clustering using pixel coordinate and intensity feature
vectors. The benchmark cameraman iamge, with 50x50 size
is used and segmentation results are shown in Figure 5. Ker-
nel width of the Gaussian kernel density estimate is manually
selected to obtain the desired number of clusters.

1One could find the shortestharmonic distance instead ofarithmetic.
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Fig. 1. Synthetic dataset composed of mixture of 3 Gaus-
sians: (a) GMM samples, (b) Delaunay graph after deleting
boundary and intra-cluster edges having low entropy values,
(c) KDE using polytope kernels, (d) Piecewise linear KDE ap-
proximation using samples from a Gaussian-KDE, (e) Initial
clustering with polytope-KDE, (f) Merging of clusters in (e)
using mode connectivity, (g) Initial clustering with Gaussian
KDE approximation, (h) Gaussian-KDE mean-shift cluster-
ing. Selection of neighborhood radius and kernel width will
effect the density estimate. We used a graph neighborhood
radius of 4 for polytope kernels and(std=1.5) for isotropic
Gaussian kernel-width.
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(b) Branch data

Fig. 2. Results on synthetic datasets.

6. DISCUSSION

In this paper we proposed using a polytope kernel density es-
timate (PKDE) for density modeling and illustrated its appli-
cation to mean-shift clustering, leading to a simple cluster-
ing algorithm that uses exact MS updates under the assumed
while, as opposed to alternatives in the literature that areap-
proximate with respect to their models. We also demonstrated
how mode merging can be achieved using a density-weighted
geodesic distance on the Delaunay graph, leading to a span-
ning tree for the data, which highlights the clustering struc-
ture in a hierarchical manner. This tree could be employed
in dimension reduction and manifold learning as a constraint.
Main practical contributions are:i) a computationally effi-
cient MS clustering algorithm that requires only one simple
update per sample;ii) a spanning tree structure for local clus-
ters as well as cluster modes that provides a hierarchical span-
ning graph representation that could be used as a constraint
for dimension reduction that attempts to maintain high di-
mensional distances and neighborhood structures;iii) if the
spanning tree for cluster modes is replaced by a pruned graph
with possible loops, bifurcations and self intersections in the
underlying graph can be identified using geodesic paths be-

(a) (b) (c) (d)

Fig. 3. Image segmentation results: (a) Original image,
(b) 5-cluster output using the proposed algorithm, (c) 6-
cluster output using the proposed algorithm, (d) Correspond-
ing Gaussian-KDE mean-shift result with 6 clusters.

tween modes.
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