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 Abstract – Single trial ERP detection is critical for 
stimulus-synchronous brain computer interfaces. This 
paper presents a comparison of three different algorithmic 
schemes for single-trial ERP detection: SVM (baseline), 
hierarchical SVM-(naïve) Bayes, selected temporal 
windows-based SVM-(naïve) Bayes. An ERP-based image 
search system, including experimental setup, data 
collection, pre-processing, and three ERP detection 
schemes is described and utilized as the framework for 
comparison. We apply three schemes on EEG data from 
four subjects acquired on four days (eight sessions) each. 
Results indicate that a properly trained SVM operating on 
data from the post-stimulus [0,500]ms interval and SVMs 
trained on 50ms nonoverlapping windows spanning the 
poststimulus [200,450]ms interval (where P300 is expected) 
whose binary decisions are fused via the naïve-Bayes 
approach perform similarly in terms of area under the 
ROC curve measure, while the latter fusion approach 
applied to all ten nonoverlapping windows spanning the 
[0,500]ms poststimulus interval is inferior. The 
poststimulus time limit of 500ms is imposed on all data 
that goes into the ERP detector because in our 
experimental setup the subjects are asked to press a button 
when they recognize the event of interest, which creates 
motor responses in the brain typically in the [600,800]ms 
interval and around. 
 Keywords – Electroencephalography (EEG), Brain 
Computer Interface (BCI), Event Related Potential (ERP), 
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I. INTRODUCTION 

 EEG has been widely used as a non-invasive approach for 
clinic diagnostics and brain computer interfaces. Thorpe’s 
work showed that event related potentials (ERP) can be used 
for target detection on a rapid serial visual presentation (RSVP) 
task [1]: a positive perturbation in EEG appears after around 
300ms of target stimulus, also referred to as P300. The basic 
idea of ERP based target recognition is to monitor and collect 
brain waves and analyze brain activities using machine 
learning techniques.  

ERP detection is challenging due to the limited signal-to-
noise ratio (SNR) of the non-invasive measurement. Eye blink, 
facial muscle movement and environment noise can 
contaminate ERP signals. Conventionally, ERP is studied by 
averaging stimulus-locked responses from multiple trials. 
However, the average process not only eliminates useful 
information about brain dynamics, but also compromises 
bandwidth of communication in a BCI setup. Recently, single 

trial ERP detection over multi-channel EEG collection 
received increasing interests due to its numerous potential 
applications, such as object recognition in brain computer 
interfaces, and information search from a large image database 
[2-7]. Huang et al. investigated several machine learning 
techniques for single trail ERP detection, including linear and 
nonlinear detectors [4], a boosting algorithm [5], and an SVM 
detector [7]. Among all ERP detectors designed and reported, 
SVM (with Gaussian kernels) yields better performance, with 
particular classification accuracy from 75% to 95% depending 
on subject and session when 32-channel EEG is utilized.  

Parra and his colleagues investigated a series of linear 
algorithms for ERP detection [8]. They also proposed 
hierarchical discriminant component analysis based on 50ms 
sliding non-overlapping windows [9-10] and reported 92% 
accuracy across five subjects (to our knowledge, the Parra-
Sajda group prefers using 64 electrodes, which makes a few 
percent addition to performance in our own experience). 

In this work, we attempt to exploit the positive aspects of 
both our own and Parra et al’s work by utilizing SVMs in a 
hierarchical window-classifier scheme followed by naïve 
Bayesian fusion. 

II. METHOD 

Figure 1 shows a typical ERP based stimulus detection system. 
Data Collection: Four subjects were recruited for the 

study under an approved IRB protocol for RSVP and EEG 
acquisition. Each subject finished eight sessions in four days 
(one session in the morning, one session in the afternoon). 
Each session contained 200 trials, each of which lasted 5 
seconds. A trial contained one second fixation followed by 40 
images (512x512) displayed at 100ms/image. A trial could 
contain no target or one target, the chance of a target 
appearing in a trial was set to 75% (making the total target 
prior <2%). The subjects indicated target detection by clicking 
on a button as soon as they saw a target (ERP signatures 
corresponding to motor activity occur typically in the 500-
1000ms post-stimulus interval and depends on the speed of 
response). At the same time, we monitored their brain activity 
via EEG and recorded all data for subsequent analysis. 

We used two computers to acquire data, one for image 
display and one for data collection. The EEG data were 
collected using a 32-channel Biosemi ActiveTwo system. 
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Figure. 1 ERP-based image recognition system. 



software was used to present images with a high degree of 
temporal precision and to output pulses or triggers to mark the 
onset of target and distractor stimuli. The triggers were 
received by the Biosemi system over a parallel port and 
recorded concurrently with the EEG signals. The user’s button 
presses of indicating the response to target presence were 
recorded by the Biosemi system as well. 

Data Pre-processing: By investigating EEG data after 
locking time origins of each response to stimulus onset, one 
can observe the P300after averaging a relatively small number 
of target trial responses (with subsequent button responses 
which confirm subject’s recognition). After 600ms, motor 
response (due to button clicks) are also evident. These signals 
are not present in responses to non-target (distractor) stimuli. 
In order to avoid ERP detection based on motor activity, we 
truncated each response to 500ms post-stimulus. Each such 
truncated response (called an epoch in the following) 
represents the spatiotemporal electrical activity across brain 
regions associated with novel visual stimulus recognition, 
including early response from the visual cortex, and perhaps 
some weak signals corresponding to premotor planning 
activity towards the end of our window. We filtered the EEG 
signals using a bandpass filter in the range 1-45 Hz and 
normalized the data from each epoch to the unit-interval using 
the statistics of the 100ms-prestimulus window. If there was 
no button click following a target, we assumed there was no 
ERP and removed the epoch. If there was more than one click 
in one trial, we only retained the earlier one. The 32-channel 
data with [0,500]ms window in each epoch were used as the 
raw input to the ERP detector. 

SVM ERP Detector: Our goal in classification is to build 
an ERP detector to accurately detect the ERPs associated with 
target stimuli. We adopt SVM [11,12] as our baseline ERP 
detector. A radial basis (Gaussian) kernel SVM is used. The 
kernel size σ and the cost parameter C can be set using cross-
validation or chosen by the designer. To avoid overfitting, in 

previous studies we adopted 10-fold cross-validation [11] to 
adjust these model and regularization parameters. However, 
this process takes a long time when a brute-force grid-search 
approach is taken to find the global optimal in a preset domain. 

 
Figure 3. ROC curves for four days data using three different ERP
detection schemes from subject 1.  

 
Figure 4. ROC curves from four days data using three different ERP
detection schemes for subject 2. 

 
Figure 5. ROC curves from four days data using three different ERP
detection schemes for subject 3. 
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Figure. 2 Three single ERP detector schemes: (a) SVM classifier on
0-0.5 second window EEG data after image triggers. (b) 10 SVM
classifiers on 10 50-ms non-overlapping windows after image
triggers, and then fused by Bayes approach. The third scheme uses
only SVMs on windows 5-9 during naïve Bayes fusion. 



Instead, based on our experience, for our particular data, we 
have proceeded with the selections σ=100 and C=10. 

Hierarchical SVM-Bayes ERP Detector: As an alternative 
to classifying the vectorized raw data using the Gaussian-
SVM, ten 50ms non-overlapping windows were used to 
partition the feature vector (in time, the interval 0,500[ms]) 
that are then individually classifier by Gaussian-SVMs of their 
own. The decisions of these first-layer SVMs are fused using 
the naïve-Bayes classifier approach, assuming that each binary 
decision is conditionally independent (given true label). Figure 
2 (b) and (c) illustrate the structure of this hierarchical SVM-
Bayes ERP detector. In (b), all windows were used and in (c), 
only component 5 – 9 were used due to the prior knowledge 
and observation of ERP. 

For m-windows, let the first layer SVM decisions be 
denoted by dj (j=1,…,m) and let c be the true ERP label: 
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Employing Bayes’ rule and invoking the conditional 
independence assumption for the decision: 
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For equal risks, defining the discriminant threshold as 
th=p(c=0)/p(c=1), according to Bayes rule, the naïve Bayes 
decision-level fusion rule becomes: 
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Combining (1) and (3) and noting that the threshold can be 
modified for different risk-ratios for miss and false detections: 
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where we estimate pj00, pj01, pj10, pj11 from training set (via 
validation), and obtain dj from layer-one SVM classifiers for 
each test sample. 
 The fact that P300 happens around 300ms after stimulus 
onset implies that not all windows carry useful information. 
For example, window 1 ([0,50]ms) carries much stronger 
background activity than any potentially present stimulus-
related response or even transients from stimulus switching 
boundaries, which is expected to compromise ERP detection 
accuracy. Eliminating irrelevant windows (features) is 
expected to improve performance and make the detector 
robust. Based on these observations, windows 5-9 
([200,450]ms) are expected to carry most discriminative 
energy. Two variations of the SVM-Bayes detector described 
above and compared in our study use (i) all 10 windows, and 
(ii) only windows 5-9 during fusion (see Figure 2). 

III. EXPERIMENTS AND RESULTS 

We applied the three ERP detector schemes described 
above to EEG data collected from four subjects. Each subject 
finished eight sessions of experiments in four days, with two 
sessions per day. We used the data from the morning sessions 
as training set and the data from afternoon sessions on the 
same day as testing set. The results are represented using ROC 

curves, area under ROC curves, and MFAR (minimum false 
alarm rate at zero miss). 

The results are comprehensively reported in Figures 3-6 
for each of the four subjects in the form of ROC curves and in 
Tables 1-8 in the form of area under the ROC curve (AUC) 
and MFAR broken down by each subject and each day’s 
experimental sessions. While we don’t observe that one 
method is clearly superior to the other two in all the instances, 

 
Figure 6. ROC curves from four days data using three different ERP 
detection schemes for subject 4.  

 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.92 0.96 0.95 0.97 
window 1-10 0.81 0.86 0.91 0.82 
window 5-9 0.95 0.93 0.92 0.93 

Table 1. Area under curves for four days data using three different 
ERP detection schemes from subject 1 

 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.95 0.96 0.81 0.77 
window 1-10 0.91 0.88 0.68 0.98 
window 5-9 0.95 0.99 0.87 0.81 

Table 2. MFAR for four days data using three different ERP 
detection schemes from subject 1 

 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.95 0.93 0.88 0.92 
window 1-10 0.92 0.84 0.86 0.87 
window 5-9 0.95 0.96 0.95 0.91 

Table 3. Area under curves for four days data using three different 
ERP detection schemes from subject 2. 

 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.71 0.93 1.00 0.64 
window 1-10 0.99 0.93 0.97 0.89 
window 5-9 1.00 0.95 0.94 0.82 

Table 4. MFAR for four days data using three different ERP 
detection schemes from subject 2. 

 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.93 0.93 0.94 0.94 
window 1-10 0.85 0.84 0.88 0.79 
window 5-9 0.90 0.88 0.94 0.95 

Table 5. Area under curves for four days data using three different 
ERP detection schemes from subject 3. 



the following qualitative observations emerge: (i) In general, 
using windows 5-9 in SVM classification, followed by naïve 
Bayes fusion of their decisions performs best more often than 
using an SVM on the whole [0,500]ms window, and these two 
are better almost all the time from fusing SVM decisions of all 
10 windows; (ii) the naïve fusion of decisions on windows 5-9 
approaches zero-false alarm rate at a higher detection rate than 
SVM on [0,500]ms, while the latter approaches 100% 
detection rate (0-miss) at a lower MFAR, based on the ROC 
curves on finite amount of trials used to obtain these results. 

IV. DISCUSSION AND CONCLUSION 

 In this paper, we described three schemes for single ERP 
detection. Based on our previous work, SVM yielded better 
performance than other methods we utilized. Using the 
Gaussian-SVM on temporal window [0,500]ms as a baseline, 
we evaluated two decision level Bayesian fusion approaches 
that utilize short-window SVM decisions of the ERP 
waveform following stimulus onset (inspired by the success 
reported by Parra and Sajda in their various papers). 
Experimental results on four subjects across sessions illustrate 
that SVM on [0,500]ms (scheme 1) and SVMs on windows at 
[200-450]ms fused at decision level via naïve Bayes method 
(scheme 3) yield similar performances, while fusing the 
decisions of all ten windows in the [0,500]ms post-stimulus 
interval (scheme 2) is inferior; expectedly so since this 
approach corrupts accuracy by introducing decisions from 
temporal data that do not contain sufficiently powerful 
evidence about the presence or lack of ERP waveforms. 

Although scheme 3 does not exhibit better performance 
than scheme 1 in all instances we analyzed, it has several 
advantages. First, it utilizes a smaller dimensionality feature 
vector, thus is expected to be more robust over long-term BCI 
training; this also contributes to computational efficiency for 
real-time implementation. Second, by breaking the raw data 
into multiple discriminant temporal components, EEG channel 
selection becomes feasible for each short window; this is 
important because at different phases of the response, different 

regions of the brain become active, therefore for each window, 
appropriate channels can be retained, contributing to further 
reduction of feature dimensionality, hence classifier 
robustness. Future work will include utilizing mutual 
information based EEG channel selection for each short 
temporal window in order to achieve this goal [13]. Third, 
scheme 3 allows us to further improve the Bayesian fusion 
model utilizing more elaborate graphical models of 
dependencies between the temporal windows. Even with the 
naïve Bayesian fusion, this approach is competitive with our 
baseline approach in the experiments performed. 
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 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.96 0.66 0.85 0.87 
window 1-10 0.97 0.85 0.99 0.93 
window 5-9 0.99 0.89 0.91 0.75 

Table 6. MFAR for four days data using three different ERP 
detection schemes from subject 3. 

 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.94 0.94 0.94 0.96 
window 1-10 0.87 0.85 0.80 0.93 
window 5-9 0.95 0.91 0.94 0.97 

Table 7. Area under curves for four days data using three different 
ERP detection schemes from subject 4. 

 Day 1 Day 2 Day 3 Day 4 
0-0.5s window 0.87 0.83 0.81 0.82 
window 1-10 0.97 0.93 0.82 0.62 
window 5-9 0.98 0.90 0.82 0.69 

Table 8. MFAR for four days data using three different ERP 
detection schemes from subject 4. 


