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ABSTRACT

One of the most important problems with current time warp-
ing algorithms in the literature is sensitivity to noise. Toim-
prove the noise robustness of the current algorithms, we pro-
pose a denoising step based on the likelihood maximization
of the pairwise signals. This approach is independent of the
selection of the particular time warping algorithm, and can
be coupled with any algorithm in the literature. Improvement
in noise robustness not only brings increased robustness to
current time warping applications, but also may trigger new
application areas where the signals that need to be compared
are buried in noise.

Index Terms— signal denoising, principal curves, time
warping, nonlinear filtering

1. INTRODUCTION

Time warping finds use in many fields of time series analy-
sis, mostly in biomedical and speech processing applications.
A common problem in time series analysis is that although
some signals show similar characteristics, their structure does
not align in time axis. Dynamic time warping (DTW) is the
first technique that aims to solve this problem [1]. DTW is
very sensitive to noise, and presence of noise may lead tosin-
gularities.

Time warping literature is rich in terms of publications fo-
cusing on the noise robustness issue. Techniques include win-
dowing of the time series signals to reduce the high frequency
content, assuming that most of the high frequency content is
noise [2, 3, 4]. This idea is based on constraining the space
of allowable warpings. They are not guaranteed to converge,
and they may prevent the optimal solution from being found.

It is probably safe to claim that almost all time warping
algorithms are derivatives of original DTW algorithm. More
recent approaches in the literature include derivative dynamic
time warping (DDTW) [5], that uses the derivative of the sig-
nals rather than the original values, enhanced dynamic time
warping (EDTW) [6], that brings a unifying view to DTW and
hidden Markov models, and context dependent dynamic time
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warping (CDDTW) [7], that exploits application specific con-
textual characteristics of the signals to improve performance.

Principal curves are defined by Hastie [8, 9] as ”self-
consistent finite length smooth curves passing through the
middle of data.” The literature on principal curves has a vari-
ety of algorithm propositions, but there is not much work on
the theoretical aspects. We recently proposed another defini-
tion for principal curves, which describes the principal curve
in terms of the gradient and the Hessian of the data proba-
bility density [10], and we will use this definition throughout
the paper.

We propose a principal curve based denoising scheme for
the time warping algorithms. We rewrite the problem in a
different feature space and propose using principal curve pro-
jections to implement a nonlinear nonparametric data driven
denoising filter as a preprocessing step. The resulting pre-
processing filter is nonparametric and employs kernel density
estimation (KDE).

2. PRINCIPAL CURVES AND SIGNAL DENOISING

In this section, we will discuss how to utilize principal curves
as a denoising filter. The feature in which the principal curve
will be determined is described and principal curve projec-
tion methodology is derived. We define the principal curve as
follows ”a point in the data feature space is on the principal
curve if and only if the gradient is an eigenvector of the Hes-
sian at this point and the remaining eigenvectors have nega-
tive eigenvalues”[10]. The details of the principal curve defi-
nition and its properties are omitted due to restricted space. In
summary, this definition generalizes the concept of local max-
imum to local ridge and the principal curve is defined as the
local maximum likelihood ridge of the data pdf in the feature
space.

In most template matching applications, the observed
signals are generally compared with a noiseless template.
Throughout the paper, we will consider the case of a noisy
signal pair that represents a more realistic scenario; a noise-
less template may not be available in all applications. For the
applications that a noiseless template is available, one ofthe
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Fig. 1. Pair of noisy (SNR = 2dB) and noiseless warped signals in time-domain (left) and in feature-r space (right).

noise terms can be dropped. The observed signals are

x1(t) = s(f(t)) + n1(t), t ∈ {t1, . . . , tN}
x2(t) = s(t) + n2(t), t ∈ {t1, . . . , tN}

(1)

wheref(t) is the sought time warping function andn1(t) and
n2(t) are additive noise. For simplicity and without loss of
generality, we assume that the discrete-time samples of the
signalsx1(t) andx2(t) have the same length and are sam-
pled at the same rate - a resampling procedure using well-
established methods can precede the proposed technique if
this assumption is invalid. We build the feature vector of the
data as

r i =




x1(ti)
x2(ti)

ti


 , t ∈ {t1, . . . , tN} (2)

Figure 1 shows the structure ofr for some realizations of
noisy signal pairsx1(t), andx2(t). Figure 1a shows the time
series signals along with their noiseless counterpartss(t), and
s(f(t)). For illustrative purposes, here we used a simple
piecewise linear signal. The structure of the noiseless signal
pairs (red) is also shown in Figure 1b. Note that, for unimodal
additive noise signalsn1(t), andn2(t), the data structure in
r space clearly shows the pairwise signal characteristics with
a perturbation around a predominant shape. This observa-
tion becomes clearer considering the structure of the noiseless
signals in ther domain (red). We propose to use the princi-
pal curve projections of the data samples to approximate the
noiseless signal characteristics.

To find the principal curve of the data inr , one can di-
rectly use our earlier proposition [10]. But here we have an
easier problem, where only the samples of the principal curve
at time indicest1 < . . . < tN are sufficient. Constraining
the time axis, namely the third dimension, one can write a
subspace likelihood maximization algorithm to find the prin-
cipal curve. At the peak of the pdf on any constrained space

t = t0, the gradient is parallel with one of the eigenvectors
of the Hessian; hence, the point is on the principal curve. We
use KDE to estimate the density, which is

p(r) = N−1

N∑

i=1

KΣ(r − r i) (3)

whereKΣ(·) is typically a Gaussian kernel function with co-
varianceΣ. While variable-full-covariance KDE would prove
more outlier robust and accurate, the computational complex-
ity trade-off needs to be considered. For the rest of the deriva-
tions in the paper, we assume that fixed-circular (isotropic)
Gaussian kernels are used. in many cases Taking the deriva-
tive of (3) with respect tor , and equating it to zero, one ob-
tains

r
N∑

i=1

Gσ2(r − r i)−

N∑

i=1

r i Gσ2(r − r i) = 0 (4)

Solving forr yields the well-known mean shift update, which
is a fixed-point, EM-type likelihood maximization rule: [12]

r ←
∑N

i=1
r i Gσ2(r − r i)∑N

i=1
Gσ2(r − r i)

(5)

To constrain the iterations to the specific time-instant of in-
terest, the update should be projected back onto thet = t0
plane.

r ← A
∑N

i=1
r i Gσ2(r − r i)∑N

i=1
Gσ2(r − r i)

+ b (6)

The projection matrixA, and translation vectorb are

A =




1 0 0
0 1 0
0 0 0


 , b =




0
0
t0


 (7)
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Fig. 2. The noisy (blue) and noiseless (red) versions of two
realizations ofrsynthetic(t) in the r domain, along with the
principal curve of the data (green).

wheret0 is the time index of the initial sampler i. Iterating (6)
until convergence (achieved when the gradient of (3) becomes
an eigenvalue of its Hessian at the current point, a condition
checked by monitoring the angle between the gradient and its
multiplication with the Hessian), one can project any sample
r i onto principal curve, obtaining̃r i.

r̃ i ≈




s(f12(ti))
s(ti)
ti


 , t ∈ {t1, . . . , tN} (8)

Principal curve iterations given in (6) has a complexity of
O(N) per sample per iteration. This complexity could be re-
duced by truncating the Gaussian kernels in the KDE, thus
iterating each trajectory based on the nearby data neighbors.

An important point here is the selection of the bandwidth
of the Gaussian kernel. The selection of kernel function is a
well studied topic, and literature on kernel density estimation
and kernel machines is rich in techniques that extend from lo-
cal neigborhood distances based heuristic approaches to max-
imum likelihood based principled methods [11]. Here we will
use a leave-one-out cross validation maximum likelihood ap-
proach to select the kernel bandwidth. The specific selections
for the experiments will be given in the experimental results
section.

After principal curve projections, any time warping algo-
rithm can be employed tõr . Since our aim is to introduce the
principal curve denoising concept, rather than optimizingim-
plementation details for a particular application, for simplic-
ity, here we use the original DTW algorithm for the following
demonstrations [1].
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Fig. 3. Mean and standard deviation of the approximation
error between estimated and true warping functions over 100
random realizations of the data.

3. EXPERIMENTAL RESULTS

To be able to control the amount of noise, and provide results
at different noise levels, we prefer to present results on syn-
thetic signals. Consider the following piecewise linear signal

rsynthetic(t) =

{
t
t1

: 0 ≤ t ≤ t1
1−t
1−t1

: t1 ≤ t ≤ 1
(9)

wheret1 is uniformly distributed between 0.1 and 0.9. We
generate realizations of this random signal and add Gaussian
noise of different powers to obtain 10dB, 5dB, 3dB, and 2dB
SNR-levels. For a 2dB signal, in Figure 2 we present the
structure of the feature space along with the noiseless sig-
nal (red) and the approximation provided by principal curve
(green). Obviously, as the noise level decreases, the accuracy
of the principal curve approximation gets better. In Figure
3, we present the results of 100 Monte Carlo simulations for
signals of different noise levels. We evaluate the integrated
error between the noiseless signal structure inr domain, and
the principal curve. Mean and±2 standard deviances of the
error is given for 10dB, 5dB, 3dB, and 2dB.

To evaluate the effects of the denoising on the final re-
sults, for a particular realization ofrsynthetic(t), we compare
the correct time warping function with time warping func-
tions of the noisy signals and the principal curve denoising
results. Figure 4a shows the results regarding to noisy signals
- again for SNR levels of 10dB, 5dB, 3dB, and 2dB - along
with the time warping function of the noiseless signal. Fig-
ure 4b shows the same for the same signals employing the
denoising step. Clearly, using the principal curve projections
instead of the data samples provides an improvement in noise
robustness.
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Fig. 4. The comparison of time warping function estimates for noisy data(left) and the principal curve denoised data (right)
overlaid on the true piecewise linear time warping function.

4. DISCUSSION

One of the most important problems with time warping al-
gorithms in the literature is sensitivity to noise. We propose
a nonlinear signal denoising technique, which is purely non-
parametric. The denoising principle is independent of the in-
put features or the time warping algorithm used.

The aim of the paper is not to improve the results of any
specific state-of-the-art time warping application, but topro-
pose a domain independent nonparametric preprocessing tool
to improve the noise robustness. Therefore, here we simply
test our system with synthetic test signals in which we can
control the noise power. For simplicity, we demonstrated time
warping results using the signals themselves as the input fea-
tures and the original DTW algorithm to find the time warping
function; however spectograms or any other feature can also
be utilized; one can couple any time warping algorithm with
the proposed technique.
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