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ABSTRACT 

This paper describes an approach for target image search 
using human brain signals generated by perceptual 
processes in the brain. The human brain generates event 
related potentials (ERPs) in response to critical events, such 
as interesting/novel visual stimuli in the form of a target 
image. In this paper, we describe experiments involving six 
professional image analysts and summarize the ERP 
detection performance as they search for targets within a 
large image database. We develop a disjoint windowing 
scheme for data preprocessing to discard irrelevant and 
redundant information from the raw data to get clean 
training data. We apply support vector machines to detect 
ERPs and conduct 10-fold cross validation for parameter 
regularization. The results demonstrate that the ERP pattern 
recognition can provide reliable inference for image triage. 

Index Terms— event related potentials, EEG, image 
triage, brain computer interface, pattern recognition 

1. INTRODUCTION 

Image search through large volumes of images has become 
an important issue in many domains. In search tasks, human 
experts display great skills in exploiting contextual cues and 
prior knowledge to deal with variability within and across 
images. In contrast, fully automated target detection 
algorithms are still not feasible. Recently researchers began 
to exploit signals associated with split second perceptual 
judgments as the basis for image triage [1-5].  

Our solution to the problem of target image search in a 
vast database is to develop an image triage platform to 
rapidly process the images and identify a subset that 
deserves careful inspection by a human expert. The triage 
process is driven by exploiting the visual and cognitive 
systems of the human expert. The goal of our research is to 
develop an effective triage platform to increase the 
efficiency of image search. The system exploits 
electroencephalography (EEG) as the main indicator to see 
if an image seen briefly by the expert contains a target 
(object of interest) or a non-target (distractor). The main 
task is to detect the event-related potentials (ERPs) 
corresponding to target stimuli. Our previous works [6-8] 
demonstrate our ERP-based image triage system is viable 
for target image search.  Here we describe a disjoint 
windowing scheme to extract EEG data and apply a support 
vector machine (SVM) as the ERP detector. The results 

establish that the system based on brain signal monitoring is 
capable of detecting targets from a large image set 
efficiently. 

2. ERP AND IMAGE TRIAGE  

The ERP-based image triage system collects and analyzes 
EEG signals by monitoring brain activity as a subject 
performs a high speed scan of large image sets. Figure 1 
illustrates the structure of the system. 

2.1 Image Display – RSVP Modality 

We adopt a rapid serial visual presentation (RSVP) protocol 
for image presentation. The work of Thorpe et al. has 
demonstrated that the ERP signal can be used as a target 
detection cue within a large image set [3]. As shown in 
Figure 2, during the RSVP search, a sequence of images is 
rapidly presented. A target image in a sequence of distracter 
images elicits an ERP, a pronounced amplitude perturbation 
in the EEG waveforms.  

2.2 ERP vs. Non-ERP 

The core task is to apply pattern recognition techniques to 
detect ERP patterns. An ERP is a stereotypical 
electrophysiological response to a stimulus. Recent research 
has demonstrated that ERPs can reveal signs of neural 
processing well before motor outputs [2]. Figure 3 is the 
ERP vs. non-ERP image plots corresponding to targets and 
distractors. One can observe a clear ERP pattern 
corresponding to targets while no pattern to distractors. 
There is also a perturbation in the bottom trace associated to 
target stimuli. The main challenge of the ERP detection is 
low signal-to-noise ratio of an ERP (Background EEG can 
be 10 fold higher than an ERP). Eye blinks or facial muscle 
movement may smear the ERP signals. The conventional 
strategy for the ERP detection is averaging across trials 
[1,3]. However, the trial-averaging compromises the 
efficiency of image search and thus is infeasible for a triage 
platform. Parra and colleagues developed a promising 
approach for single-trial ERP detection [9]. Instead of 
integrating sensor data over time, the spatial information 
across EEG sensors was integrated.   

2.3 Data Collection 

Six professional image analysts (IAs) were recruited for the 
study. None of them had experience with the RSVP 
modality. The broad-area aerial images were decomposed 



into hundreds of smaller chips (500x500) and were labeled 
whether or not they contained targets. The chips were 
presented at very high rates (durations were 60ms, 100 ms, 
or 150ms per chip) in the RSVP paradigm. The subjects 
performed target detection on an RSVP task (Fig. 2) by 
clicking on a button as soon as they saw a target. At the 
same time, we monitored their brain signals (EEG) and 
stored the data for subsequent analysis.  

We used two computers to acquire data, one for image 
display and one for data collection. The EEG data were 
collected using a 32-channel Biosemi ActiveTwo system. 
Presentation™ (Neurobehavioral Systems, Albany, CA) 
software was used to present images with a high degree of 
temporal precision and to output pulses or triggers to mark 
the onset of target and distractor stimuli. The triggers were 
received by the Biosemi system over a parallel port and 
recorded concurrently with the EEG signals. The user’s 
button presses of indicating the response to target presence 
were recorded by the Biosemi system as well.  

2.4 Image Triage 

Our goal is to develop an effective image triage system to 
leverage expert human resources. Using this technique, a 
human expert is able to rapidly screen high volume of 
images, based on which the system can assign the priority 
order to the images and identify a subset of images that 
deserve careful inspection. The system sorts the images by 
the estimated likelihood of each image being a target and 
selects a subset of the images with the highest likelihood 
values. 

3. ERP-DETECTOR CONSTRUCTION 

3.1 Data Pre-Processing 

The data comprised six training sessions and 33 test 
sessions. Each subject had one training session and several 
test sessions. The duration of each image for most subjects 
was 100ms except subject #3 and #5. For subject #3, the 
image duration in the training session and four test-sessions 
was 60ms; the image duration of three test-sessions was 
100ms. For subject #5, the image duration of the training 
and test was 150ms. In the training sessions the images were 
randomly drawn from the image chip set while in the test 
sessions the image chips were displayed in the natural 
spatial order of the broad-area image. We randomly 
positioned around 50 target images in hundreds of distractor 
images during the training while only one to eight target 
images within thousands of distractor images during the 
test. Therefore the data are very unbalanced. During the test 
for subject #3, #4, #5 and #6, fake targets that were not part 
of the original broad-area image were introduced randomly 
to keep the subject alert to prevent the boredom-related 
ERP-degeneration. We excluded these fake targets when 
conducting the performance evaluation of target detection. 

We pre-processed the EEG data to extract the most 
relevant information from the raw EEG signals using 

several procedures. First, we segmented the data into the 
task-relevant epochs. Each epoch consisted of a short 
segment of EEG (approximately 500 ms after each image 
trigger). The raw EEG data were used without filtering. 
Figure 4 shows the electrical activity over the scalp over 
time from the image onset to 900ms. One can see that there 
is a peak around 300ms for target stimuli while no 
magnitude change exists for distractor stimuli. There are 
some magnitude changes after 600ms, which are mainly due 
to motor responses (button clicks). To extract the most 
relevant portion of the ERP, we truncated each epoch in the 
interval of the stimulus onset to 500ms. Each epoch 
represented the spatiotemporal electrical activity across 
brain regions associated to a stimulus. We used the 100 ms 

Fig.1: The ERP-based image triage system 

Fig. 2: The RSVP image display modality. The upper trace is an 
ERP averaged over trials. The lower trace is the baseline EEG 
signals. The zero point of x-axis corresponds to the stimulus onset. 
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Fig. 3: The ERP images for subject #1 at channel FP1. The images 
show electrical activity following target and distractor images.  
The y-axis is trial number. The bottom traces are the EEG signals 
averaged over trials. The zero point corresponds to the stimulus 
onset. 

Fig. 4: The ERP scalp images for subject #1 on channel FP1. The 
images show average spatiotemporal pattern of electrical activity 
over the scalp following target (top) and distractor images 
(bottom).



portion preceding the stimulus onset to normalize the data, 
and rescaled the data to [0, 1]. Second, we adopted a 
disjoint windowing scheme in the training sessions and a 
sequential windowing scheme in the test sessions. The goal 
of disjoint windowing scheme was to provide clean ERP 
signals for classifier training. The disjoint windowing 
scheme reduced the data dimension and provided a more 
balanced (targets vs. distractors) training data. Figure 5 
shows the disjoint windowing scheme. Each disjoint 
window size is 600ms, 100ms before the trigger 
(normalized window) and 500ms after the trigger (epoch 
window). We only extracted the disjoint windows of EEG 
data and discarded the data overlapping within each 
window.  Third, for both training and test sessions, we 
removed the distractors in the interval of one second before 
and after the targets to eliminate the overlapping 
information in the samples. Four, for both training and test 
sessions, we removed the targets without button clicks and 
only selected the target with following button responses 
within 1.5 seconds for both training and test sessions. We 
assumed that there was no ERP if there was no button clicks 
following the targets. If there was more than one target in 
sequence, we only selected the first target. The 32-channel 
data in each epoch were eventually congregated to form a 
feature vector and the raw EEG measurements were 
subjected to the classifier. 

3.2 ERP Detector - Support Vector Machine 

Our goal in classification is to build an ERP detector to 
accurately detect the ERPs associated with target stimuli. 
We adopt SVM [10,11] as an ERP detector. A radial basis 
(Gaussian kernel) SVM is used in this study. The SVM is 
optimized to construct a maximum-margin separating 
hyperplane by mapping input vectors to a higher 
dimensional space. The separating hyperplane is the 
hyperplane that maximizes the distance between the two 
parallel hyperplanes on each side of the boundary touching 
closest data (support vectors) from each class. The 
assumption is that the larger the margin between these 
parallel hyperplanes the less the generalisation error will be. 
A cost parameter C in the optimality criterion controls the 
number of support vectors and the trade-off between 
learning error (margin) and model complexity (the size of 
the slack variables). A larger C corresponds to assigning a 
higher penalty to errors (when the classes are not separable 
by a hyperplane in the feature space). To find the optimal 
hyperplane, the SVM is trained and optimized by solving a 
convex quadratic programming problem. After training, the 
optimal Lagrange multipliers for each sample and weights 
are obtained. Support vectors, which are the data points 
lying at the border of the margin have non-zero optimal 
solutions for their coefficients in the final discriminant, 
while others converge to zero weights, thus leading to a 
sparse nonparametric forward discriminant function. 

The kernel size k and the cost parameter C can be 
chosen by users. To avoid overfitting, we adopt 10-fold 
cross-validation [11] to adjust the regularization parameters. 
The cross-validation procedure is conducted on the training 
session to select the optimal parameters and the parameters 
are then applied to the independent test data (collected in a 
session immediately following the training session) to do 
the classification. 

3.3 Evaluation Criteria and Parameter Regularization  

Due to the probability of targets being extremely low, we 
aim for a minimum false alarm rate for zero-miss (MFAR) 
strategy. Define the MFAR as Nm/ND, where Nm is the 
number of distractors for which discriminant values are 
higher than the minimum discriminant values of targets in 
the test set and ND is the total number of distractors. We also 
utilize the area under the receiver operating characteristic 
(ROC) curve [11] to quantify target detection performance. 

We conduct 10-fold cross validation for each subject. 
We train the SVM classifier, choosing the optimal kernel 
size k and cost parameter C for the SVM (from disjoint sets) 
that give the best validation performance. Validation 
performance is the average of the MFAR of nine classifiers, 
each of which is trained on a different nine-fold training set, 
and evaluated on a one-fold validation set.  

 
4. GENERALIZATION PERFORMANCE  

4.1 Parameter Selection 

We conducted the 10-fold cross-validation to select the 
optimal parameters (kernel size k and cost parameter C) for 
each subject.  We exhaustively evaluated a variety of kernel 
size k and cost parameter C combinations during the 
validation. Figure 6 shows an example of the validation 
results for selecting the optimal parameters for subject #4. It 
shows the optimal kernel size to be k=10 and C=1. We 
conducted the same procedures and obtained the optimal 
parameters for each subject.  

4.2 Test Results 

Having selected the optimal regularization parameters, we 
sought to estimate the detection performance on an 
independent test set not used for training or adjusting 

 

Image
sequence

trigger#i                   trigger# i+1         trigger#i+2 

       600ms                      600ms                      600ms 

        window #i            window #i+1         window #i+2 

EEG data

Fig.5: Disjoint windowing scheme of continuous EEG data. Each 
disjoint window is 600ms, 100ms before the trigger and 500ms 
after the trigger.  



regularization. We reported the averaged SVM results over 
ten runs as the final ERP-detection result to avoid using 
solutions from poor local optima. 

We adopted the MFAR to evaluate the test 
performance. There are 22 sessions having the MFAR 0 to 
2%. We observed that some targets did not receive button-
click responses from subjects; which were mostly fake 
targets. We noticed that one particular target was 
consistently missed by all subjects (no button click 
following this target). We conjecture that some property (to 
be investigated) of this target makes it challenging to detect 
visually in the RSVP modality. After we removed the 
targets without button clicks, the averaged ranking results 
across 33 sessions improved from 12.17% to 8.09%. Figure 
7 shows the histogram of the test result, we can see that 
88% of the sessions (29 out of 33) have very low (less than 
10%) MFAR and only four sessions have high false alarm 
rates.  All the session achieve high ROC area (>0.9) except 
these four sessions. In these four sessions, only one target in 
each session has low discriminant value, so it increases the 
MFAR. These results indicate that (assuming that targets 
would be uniformly distributed in the natural ordering of 
chips) approximately a 10-fold speed-up can be expected 
for the triaged-database compared to the original. 

 
5. DISCUSSION 

Our results show that the ERP-based image triage system 
provides a feasible solution for visual target search in image 
databases. The preprocessing procedure, such as disjoint 
windowing scheme provides effective training data and 
improves the detection accuracy. The expected performance 
in terms of high detection rate and low false alarms is 
limited by the imbalance between the prior probability of 
target and non-target images. Similarly, generalization is 
limited by the low samples-to-parameters ratio. Future work 
will focus on collecting more data from the general 
population in various image search contexts, and identifying 
robust discriminative low dimensional feature vectors for 
the ERP-based intent classification. 
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Fig. 6: The 10-fold cross validation result for parameter 
regularization on subject #4. 
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Fig. 7: Histogram of the test image sorting result on 33 test 
sessions from all subjects. 


