
 
 

 

  

Abstract—Switching approaches can improve the 
performance of adaptive schemes, however a data driven 
criterion to accomplish the task is unclear. In this paper, we 
propose a new optimization criterion for switching which is 
estimated directly from data. We apply the method to the 
recently introduced MEE and MEE-SAS algorithms. Using this 
novel switching scheme, we develop a single algorithm which 
effectively combines the strengths of MEE and MEE-SAS 
without sacrificing the simplicity and stability properties of 
MEE. We explain these results analytically, and through 
simulations. 
 

I. INTRODUCTION 
HE mean square error (MSE) has been used as the 
fundamental performance criterion in adaptive filtering 
theory [1]. The main reason for the wide use of MSE 

lies in the various analytical and computational simplicities 
it brings coupled with the minimization of the error energy, 
which makes sense in the framework of linear signal 
processing. The least mean square (LMS) [2] has become 
the core algorithm in the minimization of the error energy 
and one of its variants is the least mean fourth (LMF) [3]. 

The least mean mixed-norm (LMMN) was introduced 
as an approach towards the combination of the advantages 
of LMS and LMF [4][5]. More precisely, it aimed at 
exploiting the faster initial convergence of the LMF 
algorithm, while retaining the desirable LMS characteristic 
of low misadjustment. This combination algorithm used a 
constant mixing parameter, which may be adapted to match 
appropriately the properties of the measured signals. 
However, the optimal value of the mixing parameter is hard 
to estimate. 

In a statistical learning sense, especially for nonlinear 
signal processing, a better approach would be to constrain 
directly the information content of signals rather than simply 
their energy, if the designer seeks to achieve the best 
performance in terms of information filtering. In this regard, 
Renyi’s entropy criterion applied to the error signal has been 
utilized as an alternative to MSE in the supervised adaptive 
system training. It uses a nonparametric estimator based on 
Parzen windowing with Gaussian kernels to estimate 
entropy directly from the data samples [6]. The motivation 
for pursuing the application of Renyi’s entropy was the 
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existence of an analytically and computationally simple 
estimator for Renyi’s quadratic entropy, as well as the fact 
that the commonly used Shannon’s entropy is a special case 
of Renyi’s definition [7]. For instance, minimum error 
entropy (MEE) had been shown as a more robust criterion 
for dynamic modeling [8] and an alternative to MSE in other 
supervised learning applications using nonlinear systems. 

We also proposed a Minimum Error Entropy with self 
adjusting step-size for faster convergence as compared to 
MEE algorithm [9]. MEE-SAS provides a “Target” to 
automatically control the algorithm step size. However, one 
disadvantage of MEE-SAS is the insensitivity of the 
algorithm due to the “flatness” of the surface near the 
optimal solution. When small changes in the desired signal 
need to be tracked, a shallow surface would hinder the 
tracking ability of MEE-SAS. The loss of “sensitivity” of 
MEE-SAS can be attributed to the extremely small value of 
[ ]( ) ( )V V−0 e  near the optimal solution which suppresses the 
transfer of information from the information potential 
gradient to the weight vectors. 

In this paper, we propose an automatic switching 
mechanism between the MEE and MEE-SAS algorithm, 
directly evaluated from the data as a method to improve their 
performance (faster convergence and lower misadjustment) 
without sacrificing their simplicity and stability properties. 
This method can in principle also be applied to the LMMN 
family.    

The paper is organized as follows. Section II 
summarizes the Information Potential and presents the 
concept of MEE and MEE-SAS. We introduce our novel 
switching scheme in Section III. Section IV deals with 
simulation results and finally we conclude in Section V. 

 

II. INFORMATION POTENTIAL AS A CRITERION FOR 
ADAPTATION 

The order-α Renyi’s entropy of X  is defined as 
 

( ) ( ) .log
1

1 xxX dpH ∫−
= α

α α
                    (1) 

                     
This lead to the generalized definitions of entropy providing 
the flexibility of a parametric family, while maintaining 
Shannon’s definitions as the special case 1=α .  

The probability distribution function (pdf) ( )xp  is 
estimated using the nonparametric technique that can be 
employed for entropy estimation. For a given set of iid 
samples { }Nxx ,,1 …  drawn from the original distribution, 
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the Parzen window estimate for the distribution, assuming a 
fixed-size kernel function ( )ξαK  for simplicity, is given by 
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The kernel function and its size can be optimized in 
accordance with the maximum likelihood (ML) principle or 
other rules-of-thumb could be employed to obtain 
approximate optimal parameter selections. 

We will treat the nonparametric estimation of Renyi’s 
quadratic entropy ( 2=α ) with Parzen windows. 
Substituting (2) in Renyi’s entropy definition (1), we obtain 
the following nonparametric Gaussian kernel entropy 
estimator, 
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where ( )XV  is called the quadratic information potential. 

For online adaptation algorithms, approximating the 
expectation by the most recent sample  kx  and utilizing a 
small set of previously available samples for Parzen 
windowing, the instantaneous cost [10] is  
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 Given samples from an input-output mapping, in order to 
extract the most information from the data, the error entropy 
over the training data set must be minimized [6]. When the 
error entropy is minimized, all moments of the error pdf (not 
only the second moments) are constrained. 
 By definition (3), minimizing the entropy is equivalent to 
maximizing the information potential since the log is a 
monotonic function. Thus, the cost function ( )eMEEJ  for 
MEE criterion is given by 
 

( ) ( ) .max ee
w

VJMEE =                             (6) 

 
Since the information potential is smooth and differentiable 
by the Gaussian kernel properties, we can use its gradient 
vector to be used in the steepest ascent algorithm shown 
below, 
 

)()()1( eww Vnn ∇+=+ μ                       (7) 
                                                                                

where )(eV∇ denotes the gradient of the information 
potential. 

The maximum value )(0V  of the information potential 
will be achieved for a Dirac −δ distributed random variable 

( ))()2()1( Neee === … . As can be easily inferred from (4), 
)()( 0e VV ≤ always; hence )(0V  provides an upper bound on 

the achievable )(eV . Seen from a different perspective, 
)(0V  is the ideal “target” value to be reached in the 

information potential curve. Thus [ ])()( e0 VV −  is always a 
non-negative scalar quantity which does not change the 
direction of the weight vector but can be used to accelerate 
the conventional gradient search algorithm given in (7). This 
modified search algorithm is named MEE-SAS. The weight 
update in MEE-SAS becomes 
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where [ ])()()( e0 VVn −= μμ . 

We can further note that there exists a cost function which 
gives rise to this gradient descent algorithm which is given 
by, 
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III. SWITCHING SCHEME 
When far from the optimum, the MEE-SAS algorithm 

exhibits faster convergence over the MEE, while when close 
to it, the MEE algorithms track better than the MEE-SAS 
[9]. In order to decide the switching time to maximize 
convergence speed, an analytical criterion needs to be 
developed. 

Our idea is based on the simple fact that these two 
algorithms have the same gradient direction. Further, even 
though the update looks quite different, we can show easily 
that the optimal solution of MEE and MEE-SAS is the same. 
Thus at any given location of the performance surface, the 
only difference between the two algorithms lies in the size 
of the step we take towards the optimal solution. Thus, we 
base our switching scheme by selecting that algorithm which 
gives maximum decrease in cost function. 

For simplicity, suppose that adaptation is being 
performed in continuous-time (which could be easily 
approximated by the typical discrete-time update rules used 
in practice). We have the following MEE-SAS cost function 
and the continuous-time learning rule: 
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From this, we obtain the following temporal dynamics that 
describes the learning rule: 
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On the contrary, the regular MEE rule would have the 
following energy function and update rule as shown below. 
Note that the maximization of ( )V e  in (6) has been changed 
to a minimization problem using (4) for direct comparison 
with MEE-SAS. 
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This corresponds to the following temporal dynamics for the 
minimization of energy: 
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From (12) and (15), the general switching time is 
determined as  
 

.MEESASMEE JJ �� =−                           (16) 

 
Therefore, in the region satisfying the condition 

MEESASMEE JJ �� >−
, MEE-SAS should be used since MEE-

SAS converges faster than MEE, otherwise MEE is used. 
However, the application of the switching decision 
expression (16) to the stochastic gradient search would 
entail high computational complexity (the computational 
complexity of both MEE and MEE-SAS). Instead, we can 
modify (16) simply as 
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In (17), we need to check just the information potential at 
each iteration and compare it with a constant, which is 
evaluated with the learning rates of MEE and MEE-SAS. 

IV. RESULTS 
Here, we perform a detailed set of simulations to clarify 

our idea. We start with single step prediction of non-
stationary time series where we highlight the weakness of 
MEE and MEE-SAS and show how the switching scheme 
solves this problem. We then extend it to a more complex 
problem of switching between two non-stationary systems. 
Finally we show the improved performance of our switching 
algorithm in a realistic scenario of acoustic echo 
cancellation. 

A. Single-step Prediction 
First, we consider a FIR filter for single-step prediction of 

the Mackey-Glass (MG) time series using the SIG 
estimation of information potential. The MG time series is 

generated by an MG system with delay parameter 30τ = .  
The input vector consists of 6 (tap) consecutive samples of 
the MG time series.  

We used the non-stationary MG time series to compare 
the weight tracking ability of MEE, MEE-SAS and the 

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

N
or

m
al

iz
ed

 In
fo

rm
at

io
n 

Po
te

nt
ia

l( 
V(

e)
 / 

V(
0)

 )

MEE (μ=3)
MEE-SAS (μ=25)
Switching MEE/-SAS

Fig.1. Information potential for online prediction of 
Mackey Glass time series 
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switching MEE and MEE-SAS. Due to online mode of 
simulation, SIG results in some misadjustment and variation 
about the optimal solution. We choose a proper kernel size 
( 707.0=σ ) based on Silverman’s rule and set the window 
length to 50=L . 

In Fig.1, the drawback of MEE becomes quite evident. 
MEE takes 800 iterations to converge compared to MEE-
SAS which converges in about 100 iterations. On the other 
hand, note the large fluctuations in the information potential 
curve of MEE as compared to MEE-SAS. To investigate the 
effect of these large fluctuations, we plot the weight track in 
Fig. 2. The fluctuations in the information potential curve of 
MEE translate into ability to track the changes in optimal 
solution of the non-stationary MG time series. Unlike MEE, 
the loss of tracking ability of MEE-SAS is attributed to the 
small effective step size near the optimal solution. As seen 
from Fig. 1, the switching algorithm utilized the MEE-SAS 
to go quickly near the optimal solution and then switched to 
MEE for tracking the small change in the solution, thus 
effectively combining the strengths of both the algorithms. 
This becomes clearly in Fig. 3 where the exact switching 
nature of our new algorithm is depicted. 

B. System Identification 
In this experiment, we consider the problem of tracking 

the weights of a system which switches abruptly between 
two subsystems. To increase the complexity, we introduce 
non-stationarity by changing the subsystems slowly. The 
non-stationary unknown plant transfer function is given as 
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The FIR adaptive filter is selected with equal order. The 
input to both the plant and the adaptive filter is white 
Gaussian noise with unit variance. We select window length 

50=L  and kernel size 707.0=σ . The System mismatch 
(weight error power) is selected as a performance measure. 

Fig.4 shows the weight tracks of MEE, MEE-SAS and the 
switching algorithm. Note how quickly MEE-SAS tracks the 
abrupt change. The ability to adaptively change its step size 
and track large variations is one of the strengths of MEE-
SAS. On the other hand MEE, even though it takes long 
time to track the switching between the subsystems, gives a 
lower weight error power on a long run as shown in Fig. 5. 
This is attributed once again to it ability to track small 
changes near the optimal solution. Fig. 5 shows how our 
switching scheme takes advantage of both of them giving 
the best performance in terms of weight error power. As 
seen from Fig.6, in abrupt changing part (at initial and 
1000th iteration), the switching algorithm uses MEE-SAS 
while to track fine changes it uses MEE algorithm. 

C. Acoustic Echo Cancellation 
As a practical example, we consider the acoustic echo 

cancellation. The aim is to minimize contribution of the echo 
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signal by exactly estimating a room impulse response which 
is made by an acoustic path.  In this problem, the acoustic 
path change occasionally occurs in the near end conference 
room. The changing nature is mainly due to changes in the 
acoustic environment. For example, these are from moving 
objects in the environment, and movement of the 
microphone within that environment. All these effect a 
change in the reverberation of the sound in the space. For 
this reason, the cancellation algorithms need to compensate 
for the abrupt echo path change. 

We use two different impulse response of length H=128 
in Fig.7. At 10000th iteration, the acoustic path changed 
from H1 to H2. Unlike the previous experiment, the system 
is stationary before and after this abrupt change. The same 
length is used for all the adaptive filters. The input signal is 
a uniform distribution signal with unit variance. The 
measurement noise is white Gaussian distributed with zero 
mean and 410−  variance. We selected a kernel size of 

707.0=σ  based on Silverman’s rule and set the window 
length to 200L = . In order to test the ability of convergence 
to compensate for the abrupt echo path change, we use the 
weight SNR as a measure of performance. 
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Fig. 8 shows the weight SNR of three algorithms. The 

performance of the switching algorithm is the same as that 
of MEE-SAS in abrupt changing part (at initial and 10000th 
iteration), while it is the same as that of MEE around the 
solution. This switching is seen clearly in Fig. 9. Notice the 
rattling effect around the switching time. This is due to the 
fluctuations in the effective step size of MEE-SAS as shown 
in Fig. 10. Since our switching scheme (17) utilizes this 
information, we continuously switch between MEE and 
MEE-SAS in this uncertainty region. The fluctuations in the 
step-size of MEE-SAS are attributed to the difficulty in 
getting a reliable approximation of ( )V e  using stochastic 
estimation in this practical problem. It should be noted that 
this rapid switching in no way harms our switching 
algorithm and in fact ensures that we select the best 
algorithm at each iteration, thus enhancing the performance 
of our switching scheme. Also note the spikes in Fig. 10 at 
10000th iteration reflecting a very fast step-size adjustment 
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Fig.7. Room Impulse Response (H) 
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which helps MEE-SAS to immediately track the acoustic 
path change.  

V. CONCLUSION 
The switching MEE and MEE-SAS algorithm has been 

developed and shown to outperform MEE and MEE-SAS 
judging the performance of both rate of convergence and 
tracking. Further, we note that the total time consumed by an 
algorithm can be optimized considerably by simultaneously 
switching decision with respect to the convergence speed of 
MEE and MEE-SAS without sacrificing their simplicity and 
stability properties. We have corroborated this with 
extensive experiments on both artificial and real systems 
showing how the switching algorithm effectively combines 
the strengths of both MEE and MEE-SAS to give good 
performance. 

Future work involves extending this novel multiple-
switching technique to select the optimal p  in the general 
cost function ( ) ( )[ ]pVVJ e0 −= . 
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