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Abstract—This paper addresses the problem of 
conducting visual target search on a large set of images. 
We present an approach that fuses neurophysiologic 
signals and overt physical responses to achieve high 
target detection accuracy. An experimental evaluation of 
the method was conducted using trained human experts 
in the paradigm of finding target objects in broad area 
aerial images. Spatial target likelihood maps were utilized 
to present estimated target locations in the images. 
Efficacy of the method was demonstrated on multiple 
subjects. 

I. INTRODUCTION 
nformation overload and lack of skilled human experts to 
process all acquired and stored data is an issue that 

emerged with the transition of the society to the information 
age. One such domain is image archive search for 
relevant/target-containing images in a large database of 
imagery, a situation that occurs in the fields, such as medical 
informatics and surveillance. In such domains, the existing 
imagery to be searched through exceeds the capacity of 
human experts using traditional search techniques. 
Therefore, effective image search through large volumes of 
images has become a crucial problem. One solution to this 
problem is an effective triage mechanism which would 
rapidly process the images and identify a subset that 
deserves careful inspection by a human expert. In complex 
domains, fully computerized machine learning solutions to 
the triage problem are not possible, although in more 
restricted scenarios such automated techniques have 
experienced success. Consequently, in this work, we 
exploited human experts as accurate target detectors and 
utilize their neurophysiologic and physical responses as 
indicators to see if an image is a target or a distractor. 

The primary objective of our research is to develop an 
effective triage platform to boost the efficiency of image 
search. The key to achieve these dramatic boosts in 
efficiency lies in leveraging the information contained in 
electroencephalogram (EEG) signals with behavioral data. 
Recently, Thorpe and colleagues demonstrated that an 

evoked response potential (ERP), a brief change in the 
brain’s electrical potential in response to critical events in an 
environment, can be a cue to detect targets with rapid serial 
visual presentation (RSVP) of images [1]. ERP can be 
estimated by analyzing EEG signals at a window size of 
hundreds of milliseconds (ms) following the stimulus onset. 
As shown in Figure 1 (by averaging 20 trials), ERP(P300) 
appears as a pronounced amplitude perturbation following 
the critical event in the EEG signals. The main challenge for 
ERP detection is the low signal to noise ratio. The 
conventional strategy for ERP detection is trail averaging, 
which compromises the efficiency of the image search and 
thus is infeasible for triage platform. Parra and colleagues 
recently developed promising approaches for single trial 
ERP detection [2,3], providing a solution to real-time brain 
computer interface design. 

In our pilot study, we have investigated efficient machine 
learning algorithms to develop an ERP-based triage system 
using EEG signals [4-6]. The basic idea of an ERP-based 
triage system is to collect the EEG signals by monitoring the 
brain activities when a subject performed visual target 
detection from a huge amount of images and then detect 
ERPs associated to target responses. Our pilot study 
demonstrated that the ERP-based triage system is feasible 
and efficient for identifying targets within image sequences 
presented at RSVP modality. The experimental evaluation 
was carried out with subjects from the general population. 

Based on our pilot study, we proposed a fusion solution 
for image triage, combining discriminative information from 
single trial ERP detection and overt physical response – a 
button press action by a subject following a target. The main 
benefits for the fusion method are based on the fact that the 
EEG and button responses provide good discrimination 
performance and thus we can take advantage of the strength 
of the two classifiers to reduce uncertainty. Classifier fusion 
has been widely used in a large variety of practical 
applications, such as remote sensing and biometrics personal 
identification [7,8]. The idea is to combine existing well 
performing classifiers to reduce overall classification error. 
Essentially there are two groups of classifier fusion 
techniques based on classifiers or classifier outputs. The 
methods operating on classifier outputs can be further 
divided into three types: class labels, class ranking and soft 
outputs. Among these three types, the soft output methods 
can be expected to produce the greatest improvement in 
classification performance [7]. Gerson and colleagues 
applied multiple linear classifiers and estimated optimal 
weights for each classifier using logistic regression, one of 
the class ranking fusion method for ERP detection [9]. They 
found out that the integration of neurophysiological and 

I 

Yonghong Huang is with the Computer Science and Electrical 
Engineering Department, Oregon Health and Science University, Portland, 
OR 97239 USA, (e-mail: huang@csee.ogi.edu). 

Deniz Erdogmus is with the Computer Science and Electrical 
Engineering Department, Oregon Health and Science University, Portland, 
OR 97239 USA, (e-mail: derdogmus@ieee.org). 

Santosh Mathan is with the Human Centered Systems Group, Honeywell 
Laboratories, Minneapolis, MN 55418 USA,  
(e-mail: Santosh.Mathan@honeywell.com). 

Misha Pavel is with the Biomedical Engineering Department, Oregon 
Health and Science University, Portland, OR 97239 USA,  
(e-mail: pavel@bme.ogi.edu). 



behavioral responses can offer the best strategy for rapid 
image search.   

In this work, we applied Bayesian fusion method, one of 
the soft output methods, to combine the ERP and button 
responses in conjunction with RSVP modality. The 
experiments were conducted on human professionals on 
target detection within large image sets. The objective was 
to investigate the efficacy of the fusion approach on skilled 
human experts. 

II. METHODS 

A. Data Collection 
1) Data Acquisition 
The data were collected from three professional image 

analysts: at the time of experiments, subjects S1, S2, and S3 
had 6 years, 6 months, and 10 years of experience. None of 
them had experience with the RSVP modality. Subjects were 
instructed to perform target detection on broad satellite 
imagery, where the targets were predefined man-made 
structures. 

As the subjects were trained in both the target 
characteristics and the RSVP modality prior to the tests, 
EEG and button data was collected to train the 
discrimination algorithms. The test broad area image was 
segmented into small chips at the same zoom level and 
resolution as the training images. All images were presented 
using the RSVP paradigm as illustrated in Figure 1. Images 
were presented in rapid succession for durations of 60 or 100 
ms/image. Participants were asked to indicate the presence 
of targets by pressing a key as soon as they saw a target. 

When the subjects conducted visual target identification, 
their EEG data was collected using the BioSemi system by 
connecting 32 electrodes on their scalps in the International 
10-20 configuration. Timing triggers for all relevant events 
were recorded concurrently with EEG signals. The data were 
sampled at 256 Hz. 

2) Data Preprocessing 
There was no explicit bandpass filtering and the EEG data 

was segmented into epochs. Each epoch consisted of a short 
portion of EEG around each image onset (25 samples prior 
to and 255 samples following onset). Targets in the training 

set were limited to epochs where a button response was 
recorded within a second of the target trigger. The number of 
distractor samples was selected to match the number of 
target samples in the training session to avoid biasing 
classifier. In addition, computational and memory 
limitations prevented utilizing a large number of training 
samples due to the high data dimensionality. In the test 
sessions, fake targets that were not part of the original broad 
area image were introduced randomly in order to keep the 
subject alert and prevent boredom-related ERP-
degeneration. Each channel in each epoch was rescaled to 
the interval [0,1] in order to emphasize location of ERP peak 
rather than its amplitude. The training and testing samples  
were limited to points between 195ms and 900 ms after the 
trigger. The data associated with each epoch were stored in a 
matrix (number of channels versus the number of samples of 
each epoch). The features used for classification were simply 
the temporal EEG measurements from 32 channels. 

Figure 1. An illustration of the RSVP image presentation modality 

B. Classification Method 
The fusion method is a combination of two classifiers: 

ERP-based classifier and button-based target likelihood 
estimate. Button press can provide accurate triage 
performance with higher latency and variability associated 
with motor response while ERPs can provide more precise 
localization of targets within RSVP context. The motivation 
of using the fusion approach is to combine the redundant 
source to reduce the false alarms.  

1) ERP detection 
Support vector machine (SVM) is a learning technique 

that has been widely used in pattern classification, especially 
in applications which involve large data sets with high 
dimensionality due to the implicit complexity penalization 
properties [10]. The basic idea is to find a class 
discriminating hyperplane in the feature space corresponding 
to the kernel with the largest margin. Support vectors are the 
data points lying at the boundary between the classes. Using 
the kernel trick, nonlinear decision surfaces can be obtained 
by solving a linearly constrained quadratic programming 
problem. We used a support vector machine (SVM) with 
radial Gaussian kernels as the ERP classifier in this work.  
2) Button press detection 

The button press latency following targets can be modeled 
by a gamma distribution whose parameters are estimated 
from the training session data using the maximum likelihood 
criterion. The obtained gamma distribution can then be 
utilized in the test session in a Bayesian manner to assess the 
probability that an image preceding a button press is the 
perceived target responsible for that action. These 
probabilities are obtained by integrating the gamma 
distribution model in the interval corresponding to each 
particular image preceding the button activity. 

3) Fusion of Classifiers 
Due to lack of extensive training data and the nonsmooth 

distribution of posterior probability estimates of ERP-SVM 
and button-gamma target likelihood evaluators, in this work, 



we have employed a linear classifier to accomplish the 
fusion of these two classifiers.  

Ideally, one employs Bayesian fusion. The basic idea is to 
treat the posterior class-likelihood estimates of the various 
classifiers to be fused as components of a feature vector and 
building a Bayesian risk minimization discriminant for this 
particular vector. The output of such a Bayesian fusion 
model forms the optimal back-end-fusion strategy, yet it also 
faces all the challenges associated with designing truly 
Bayesian classifiers. Specifically in the binary case where 
there are two classes labeled {0,1}, if one uses multiple 
classification schemes to estimate pj(1|x), the posterior 
probability that a feature vector x belongs to class  1, or 
some function of this quantity, for j=1,…,J different 
classifiers, then one can construct a feature vector z where 

1[ (1 | ),..., (1 | )]T
Jp p=z x x  (1) 

and build a Bayesian fusion by constructing a Bayesian 
classifier to determine p(1|x)=∫p(1|z)p(z|x)dz. 

Specifically, if one assumes that p(1|z)≈αTz+β around our 
operating point for the current z after ERP and button 
assessments are generated, we see that the Baysian fusion 
rule simplifies to 

p(1|x)≈ αT ∫zp(z|x)dz+β=αTE[z|x]+β ≈αTz+β, (2) 
a simple linear combination rule whose weights can be 
optimized based on training data to minimize the 
classification error. Specifically, the fusion probability is 
obtained using the following: 

P(target)=c1P(target|ERP)+c2P(target |Button)+c3 (3) 
where P(target|ERP) and P(target|Button) are the two 
feature vectors. P(target|ERP) is the ERP-classifier based 
probability that the image under consideration contains a 
target, and P(target|Button)  is the same probability as 
assessed by the gamma distribution model for response 
latency. The coefficients ci (i=1,2,3) are estimated by 
training a linear classifier to the probability estimates of the 
classifiers on the training data. 

C. Evaluation 
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Figure 2. ROC curves for ERP, button press, and fusion 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Prob Button

Pr
ob

 E
R

P

S2 #2 Training  

0 0.2 0.4 0.6 0.80

0.5

1

Prob Button

Pr
ob

 E
R

P
S2 #2 Test

  (a)                                           (b) 
Figure 3. Scatter plots (P(target|ERP) vs P(target|Button)) for the training 
session (a) and test session (b). Green line is the boundary of the fusion 
classifier. Blue dots are target samples and red dots are distractor samples. 

We used the area under the ROC curve to quantify the 
detection performance in terms of the relationship between 
false positives and true positives. The final performance was 
assessed using the area under the ROC curve. 

III. RESULTS 
The primary focus of the experiments was to 

experimentally evaluate the efficiency of target search for 
experts using a combination of neurophysiological signals 
and overt physical responses in the context of the RSVP 
modality. Data were collected from three human experts (S1, 
S2, and S3). Each subject completed one training session 
with presentation rates of 100ms/image for s1 and s2 and 
60ms/image for s3. In the test sessions, the three subjects 
completed one, four, and seven sessions respectively (Each 
test session is a different broad area image search). The 
duration of each image for S1 and S2 was 100ms. For S3, 
four sessions were at 60ms rate and three were at 100ms 
rate. The data was unbalanced at least a few hundred-fold, 
since there existed many more distractor images than target 
images. For S1 and S2, approximately 50 target images 
randomly positioned in a total of approximately 2750 images 
were presented in the training sessions. For S3, the training 
session contained 58 targets among 5492 distractors. All 
subject test sessions each contained two to eight targets 
within thousands of distractors. To avoid biasing the 
classifier, we randomly selected the same number of 
distractors as targets for training.  

For ERP detection, the kernel width and slack parameters 
of the SVM were adjusted using cross validation and the 
SVM output was passed through a logistic function with unit 
slope at zero to normalize the output to [0,1] to facilitate 
their interpretation as probability levels. (Any monotonic 
function could be used and theoretically would not influence 
the final decision.) For button detection, we removed the 
fake target related button responses and obtained the 
gamma-distribution based target probability assignments for 
each test image clip. The fusion target likelihood assessment 
was obtained using the linear fusion rule in equation (3). 
Figure 2 shows the ROC curves of three detection schemes 
for S2 test # 1. The area under the curve for ERP detection, 
button and fusion are 0.98, 0.98 and 1. It is clear that the 
fusion approach achieved the best performance. 

For fusion detection, we estimated a weighted linear 
classifier from equation (3) using training data and then 
employed on the test images as shown in Figure 3. Based on 
the estimated probability from the fusion classifier, a contour 
plot of the target likelihood was calculated for each image 
and overlaid on the actual broad area image for visual 
presentation to the human expert for final confirmation. 
Figure 4 illustrates a hotspot target likelihood assessment 
after fusion for a test image using S2 # 2. The four squares 
indicate the actual target locations for this particular image. 
This visualization technique allows efficient post processing 
of triage outputs.  



 Our experiments on three subjects have obtained high 
ROC area values as shown in Table 1. The true positive (TP) 
and false positive (FP) detection performances are shown in 
Table 2. The overall TP rate across subjects is 85.7% and the 
overall FP rate across subjects is 28.6%. The fusion process 
has been successful particularly in removing false positives, 
leading to an increase in performance. Note that the 
individual ERP and button classifiers already had very high 
area-under-curve measures, leading to the seemingly 
incremental increase in performance. 

IV. CONCLUSION 
 We have implemented a neurophysiologic and 
behavioral response fusion technique to rapidly search large 
image databases for images containing targets of interest 
using the human visual system as the primary target 

detection sensor. The final prototype combining information 
from an ERP detection classifier and a behavioral response 
latency model was tested on data collected from three human 
subjects who are experts in searching for particular types of 
targets in the large image database domain that has been 
utilized in the experiments. Decision fusion from the two 
modalities has been observed to reduce false alarms 
significantly with respect to the ERP classifier and also with 
respect to the motor response alone. Overall, time savings of 
up to 87% (close to 10-fold increase in speed) for 100% 
detection level and 82% (close to 5-fold increase in speed) 
for 80% detection level compared with the baseline of 
manually searching for targets through the images using map 
survey software. Future work will focus on collecting more 
data from the general population in other image search 
contexts and identifying robust discriminative low 
dimensional feature vectors for ERP-based intent 
classification for general purpose brain computer interfaces. 
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