
 
 

 

  

Abstract— In this paper, we describe a system for detecting 
encephalography (EEG) signatures of visual recognition events 
evoked in a single trial during rapid serial visual presentation 
(RSVP).  In order to investigate the viability of nonlinear 
approaches in EEG detection and assess the performance 
comparison, we applied three classifiers (linear logistic 
regression model, Laplacian classifier, and spectral maximum 
mutual information projection) in the detection tasks. The EEG 
was recorded using 32 electrodes during the rapid image 
presentation (50ms/100ms per image). Subjects were instructed 
to push a button when they recognize a target image. The 
results suggest that while the detection of single trial EEG-
based recognition is possible, taking advantage of the nonlinear 
techniques requires data representation that would overcome 
the non-stationarity of the EEG signals. 

I. INTRODUCTION 
LECTROENCEPHALOGRAPHY (EEG) has been a useful 
non-invasive technique for the assessment and diagnosis 

of various brain functions and sleep disorders. More recently 
researchers began investigating techniques in which EEG 
signals are used to control prosthetic devices and for brain-
computer interfaces [1] [2]. Along these lines, EEG has been 
used to assess the cognitive state of an operator and even to 
infer whether a human operator detects a target in sequences 
of images. The latter application requires a system to detect 
the presence of a small signal during a rapid serial visual 
presentation (RSVP) of images sequences [3-6].  

The problem of searching for targets in vast collections of 
imagery is one that affects practitioners in a variety of 
domains – from medical diagnosis to intelligence image 
analysis.  Advances in imaging and storage technology have 
served to lower the cost of collecting and storing high 
volumes of imagery. However, the cost of searching through 
large sets of imagery for important information can often be 
substantial. In many domains, such as medical diagnosis and 
intelligence analysis, effective search currently requires the 
expertise of highly skilled analysts who search though 
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sequences of images in a relatively slow manner.  
Unfortunately, the availability of skilled analysts is simply 
insufficient to cope with the volume of imagery to be 
analyzed. For example, the military reports that most 
intelligence imagery goes without being examined by 
analysts [7]. 

Evoked response potentials (ERPs) arise from coherent 
neural activity and are reflected in specific morphological 
changes in EEG waveforms in response to task-relevant 
stimuli [8]. Prior research demonstrated that ERPs in EEG 
signals, which reflect the activity of underlying cognitive 
processes, may be used to identify targets within image 
sequences presented at very high presentation rates [3-5]. 
ERPs could be used in conjunction with RSVP of images to 
dramatically raise the efficiency of searching through high 
volumes of imagery. During an RSVP presentation, a 
continuous sequence of images is rapidly presented. A target 
image in a sequence of nontarget distracter images elicits in 
the EEG a stereotypical spatiotemporal response.   

ERPs are difficult to detect. These signals typically range 
in amplitude from approximately 1 to 10 μV, while 
background EEG activity may range from 10 to 100 μV. 
Common events such as eye blinks or facial muscle activity 
can completely obscure ERPs. In order to deal with such an 
inherently low signal to noise ratio, ERP detection has relied 
on a strategy of trial averaging [9]. Under this strategy, an 
experimental stimulus is presented to a subject several times. 
The waveforms elicited by each stimulus are averaged. 
Background EEG washes out in the averaging process, and 
the event-induced activity becomes prominent.   

While integrating information across repeated 
presentations of a stimulus is an effective way to identify 
ERPs, it is an impractical strategy for application domains, 
such as a triage platform. Repeated presentation of stimuli 
compromises the efficiency of the search process. In 
domains where efficient ERP detection is critical, accurate 
detection of ERPs within a single trial becomes necessary. 
However, single trail detection of ERPs requires a robust 
signal processing and classification approach to overcome 
the problems imposed by the inherently low signal-to-noise 
ratio. 

This work aims to investigate the possibility of using 
single trail detection of ERPs in the context of a triage 
platform (identify a subset of images that are likely to 
contain target images – the triage process trades of 
specificity for sensitivity). We applied pattern classifiers 
using these responses to recover spatial components that 
reflect differences in EEG activity evoked by target vs. 
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nontarget images. The goal of our technical approaches is to 
detect ERPs reliably and efficiently. 

Various multivariate signal processing algorithms have 
been proposed for EEG detection [10-14]. Linear techniques 
are commonly employed in ERP detection. Linear projection 
[12-14], the current state-of-the-art, served as the baseline 
approach in this work. We first implemented a linear spatial 
ERP detector using a logistic regression model to learn an 
optimal linear discriminator from the spatial distribution of 
EEG activity (optimal under the exponential parametric 
model that is assumed). Even though this technique may 
provide acceptable levels of performance in some situations, 
it is restricted in their ability accommodate any nonlinear 
amplitude and temporal distortions that the ERP waveforms 
may exhibit from trial to trial even within the same session 
with the same subject [15]. Such deviations will render the 
linearity and Gaussianity assumptions invalid, thus will lead 
to suboptimal detection performance. 

Nonlinear techniques have been validated in other signal 
processing domains, where they have dramatically 
outperformed linear techniques. Our nonlinear matched 
filters for ERP detection rely on kernel based projection 
techniques that have been growing in popularity in the 
machine learning community [16-18].  The nonlinear 
techniques were applied in this work to assess the 
performance comparison among the linear and nonlinear 
approaches on discriminating EEG activity between 
target/distracter trials of an RSVP task. We expected our 
nonlinear approaches would demonstrate identical or greater 
sensitivity and specificity than state-of-the-art linear ERP 
detection algorithms without restrictive assumptions about 
the underlying data. 

II. METHODS 

A. Data Acquisition and Description 

1) Data Acquisition 
Subjects were instructed to perform visual target detection 

amongst distracters. Objects of interest, referred to as 
targets, consisted of satellite photographs of ships or boats in 
the midst of a pool of satellite images around a port scene. 
Both the target and distractor images were drawn from a 
common high-resolution, broad-area, satellite image. All 
imagery was presented using the RSVP paradigm (see 
Figure 1). Images were presented in rapid succession for 
durations of 50 or 100 milliseconds per image. 

EEG data was collected over the course of little over an 
hour. Each session lasted approximately 20 minutes. There 
was a rest period of approximately five minutes between 
sessions. A fixation screen, which lasted several seconds, 
was used to separate trails. Each trial contained a sequence 
of approximately 50 images. Of the trials, 50% contained 
targets while 50% did not. Each trial consisted of a sequence 
of images in which, if existed, a target image was positioned 

randomly (except at the first and last 10 images in the 
sequence). 

The data were collected using a 32 channel BioSemi 
Active Two system. The electrodes were placed on a 
standard electrode cap, at locations corresponding to the 
international 10-20 system. A facial electrode was also used 
to record eye activity. All channels were referenced to a 
common mean reference. Data was sampled at 256 Hz. 
Triggers sent by the Presentation script to mark the onset of 
target and distractor stimuli were received by the BioSemi 
system over a parallel port and recorded concurrently with 
EEG signals.  

A variety of signal processing components were 
implemented for reducing the impact of noise artifacts that 
could compromise ERP detection. EEG was bandpass 
filtered between 1 Hz and 30 Hz, using an 8th order 
Butterworth filter to correct for DC drift and limit the effects 
of 60 Hz electrical line noise. An adaptive linear filter was 
used to correct EEG signals affected by eye blinks. Using 
the eye electrode as a noise reference, the adaptive linear 
filter used the Widrow-Hoff learning rule (least mean 
squares) to derive an estimate of the impact of eye activity 
on EEG electrode sites. Once the algorithm had converged, 
estimates of eye activity at each electrode could be 
subtracted from the signal at each electrode to 
decontaminate the EEG signal of eye blink activity.  

2) Data Description 
EEG data was segmented into epochs. In the case of 

target trials, each epoch consisted of a two second segment 
of EEG, one second before, and one second after the onset 
of target stimuli. For the distracter trials (no target trials), 
epochs were extracted around the trigger associated with the 
middle image of each trial block. Data associated with each 
epoch were stored in a 32*512 matrix (number of channels * 
EEG samples). The 512 data points represent 256 samples 
values (i.e., one second of data) before image the trigger and 
256 samples after the image trigger. Each epoch served to 

Fig. 1: Experimental design. Subjects viewed trials with or without targets. 
50% of trial blocks contained targets. Fixation screen separated trial blocks. 



 
 

 

provide a picture of spatiotemporal electrical activity across 
brain regions. Each twenty-minute session yielded 
approximately 80 to 90 target epochs and 80 to 90 distracter 
epochs each. 

We used two sets of pilot data in this work. The first 
dataset was collected from one subject. In this experiment, 
images were presented at rates of 100ms or 50ms per image 
for different blocks of trials. The images either contained 
targets or no target. The subject was instructed to indicate 
presence of targets by clicking the mouse at the end of each 
trial. The subject was required either response as soon as he 
had seen a target (button) or respond after a block of trials 
had been presented (noButton).  There were two sessions. 
For each session, there were four sets of data with targets 
and four sets of data without targets. 

The second dataset was collected from two subjects. It 
used the same system and had the same data structures.  
There are three sessions for the first subject and two sessions 
for the second subject. In each session, there are one set data 
with targets and one set of data without targets. 

B. Classification Methods 
EEG activity resulting from presentation of target and 

distracter stimuli was detected by three classification 
approaches: Linear logistic regression approach, Laplacian 
classifier and Spectral maximum mutual information 
projection method. 

1) Linear Logistic Regression Classifier 
This is the state-of–the-art linear discrimination approach 

in ERP detection based on logistic regression [12-14]. The 
linear approach relies on the assumption that the EEG 
signals are a linear combination of distributed source 
activity and zero-mean white Gaussian measurement noise. 
Consequently, the optimal ERP detection strategy under this 
assumption is to determine optimal linear projections of the 
sensor measurements to maximize discrimination ability.   

A linear discriminant function is defined as linear 
combinations of the components of x =[x1…xn],  

by T += xw  (1)                           
where w is the weight vector and b is the bias [20]. The 
linear projections are optimized using the logistic regression 
technique that assumes the conditional class probability 
given the projection will follow a logistic model, 
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which is consistent with the Gaussian assumption.  This 
likelihood is parameterized by the weight vector w and bias 
b. The parameters are adjusted by maximizing the likelihood 
of the data so that the data matches the logistic model 
distribution in (2). In order to compute efficiently, the 
iteratively re-weighted least squares algorithm was used to 
learn spatial weighting coefficients for discrimination. [21].  

2) Laplacian Classifier 

This is a classifier operating in a kernel feature space 
related to the eigenspectrum of the Laplacian data matrix 
[16-17]. The classification rule is based on comparing 
angles between test data points and class mean vectors in the 
kernel induced feature space. The Laplacian classifier has 
demonstrated comparable performance to support vector 
machine with less computational complexity, because it does 
not require iterative convex optimization [16]. It may 
become an alternative to support vector machine for large 
data cases. 

Consider the two class problem with two class conditional 
probability density functions p1(x) and p2(x). The 
classification cost function is derived from the Cauchy-
Schwarz distance between these two probability density 
functions, defined as 
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Here f(x) is the overall probability density function of the 
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This cost function can be nonparametrically estimated 
using a technique similar to Parzen window density 
estimation. Given a unimodal Gaussian density and a set of 
samples {x1, ….xN}, 
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where W is the Parzen window or the kernel and σ is the 
kernel size. Now we define the matrix Kf  as 
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jijijif KffK xxxxxx −−=  (6) 

where ),(),( 22 jiji WK xxxx σ= , i,j=1,….N, is the data 

affinity matrix (also called the Gram matrix) using a 
Gaussian RBF kernel. Note that the increase in the kernel 
size is due to the convolution effect of the integrals in (4). 
Letting 〉ΦΦ〈= )(),(),( jfifjifK xxxx , where Фf(·) is 

the nonlinear mapping. According to Mercer’s spectral 
decomposition theorem, which is also the basic for nonlinear 
support vector machines, we have 
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of the ith class in the kernel induced feature space obtained 
using the samples xj that belong to class i.  

By utilizing the Parzen window method, the distance 
measure between densities in the input space turns into the 



 
 

 

distance measure between two classes of data points in a 
Mercer kernel feature space. In the feature space, the 
distance measure is the cosine of the angle between the 
cluster mean vectors. Based on the training data set, we may 
define the class mean vectors for each class. For the purpose 
of minimizing the classification cost function, by measuring 
the angle between a test data point and each of the mean 
vectors, we can assign the data point to the class that the 
angle is the smallest.  

3) Spectral Maximum Mutual Information Projection 
This approach uses the information theoretic concept of 

mutual information (MI) [22-24] to identify an optimal 
nonlinear projection using the kernel induced feature space 
approach [18]. Kernel based transformations provide a way 
to convert nonlinear solutions into linear ones via a 
projection into a high dimensional space. The goal is to find 
a nonlinear subspace projection such that Shannon MI 
between the projection and the class labels is maximized. 

The number of samples in each class is denoted as Nc and 
the number of classes is denoted as C. Given a set of data 
{x1,…,xN} and associated class labels {c1,…, cN}. The original 
data are projected to the kernel feature space through the 
eigenfunctions according to the theory of reproducing 
kernels for Hillbert spaces. For the reduced dimensionality 
d, the projection model can be expressed as  

)(xφVy T=  (8) 
where V=[v1,…,vd]  consists of orthogonal vectors, φ(x) is 
the hypothetical embedding vector which consists of the 
infinitely many eigenfunctions of the kernel {φ1(x),φ2(x)…}. 

The MI between the original feature vectors and the class 
labels can be expressed as follows [11]. 
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The probability density functions can be estimated by kernel 
density estimation [9]. 

∑

∑
∑∑
=

≈
N

j

c
j

c
i

Nc

j

c
j

c
icN

ic c

c
S

KN

KN

N
p

cI
c

),()/1(

),()/1(

log);(
1 xx

xx

x  (10) 

Here we use Gaussian kernel functions.  The kernel size 
selection is given by Silverman’s rule [26].  
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where Σx is the sample covariance matrix, n is the data 
dimension, N is the total number of samples.   

According to Nystrom, the kernel feature transformation 
can be calculated as 

)()( 12/1 xΦΛxφ kN −≈  (12) 

where the eigendecomposition of the kernel matrix defined 
above ΛΦΦK T=  yields the necessary parameters for the 
Nystrom approximation. Then, for the case where one-
dimensional projections are sought, equation (10) can be 
rewritten as  
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information maximization problems results in the optimal 
solution 

αMpv 1/2=  (14) 
where M=[μ1,… μc], p=[p1,…pC],  μ=Mp. For the two-class 
scenario, the optimal α is given as [-p2

1/2, p1
1/2] as shown in 

[18]. Combining (8), (12), and (14), we obtain the spectral 
maximum mutual information projection test statistics for 
signal detection. 

C. Learning and testing procedures 
The experimental paradigm for training the classifiers is 

as follows. Three approaches were conducted for the within-
session experiments. The first one is a leave-one-out training 
and testing procedure [20]. Since leave-one-out artificially 
induces the assumption of identically distributed training 
and test data, we employed a different technique to verify 
generalization. The method is the five-fold crossvalidation 
procedure. We partitioned each session into five sets of data. 
One of these five sets was chosen as the testing set and the 
remaining four as training. The final performance was 
averaged over the five possible cases for testing data. For 
the cross-session experiments (which are useful to evaluate 
the session-to-session transfer of classification 
performance), we used one full session as the training set 
and the other session as the test set. The features used for 
classification are simply the temporal EEG measurements 
from 32 channels at 512 time instances centered on the 
target stimuli. 

D. Evaluation 
Receiver operating characteristic (ROC) analysis [26] is 

used to quantify the discriminators’ performance. The final 
performance is assessed using the area under the ROC 
curve. The actual probability of detection error depends on 
the frequency of targets, a factor that is determined by 
specific operational details. 

III. RESULTS 
In an attempt to investigate the performance comparison 

using linear and nonlinear detection approaches for ERP 
discrimination, a complete experimental evaluation was 
conducted on two different datasets. The goal of these 
experiments is to determine the effects of nonstationarity on 



 
 

 

classifier generalization, as well as to assess the feasibility 
of rapid image search using the RSVP paradigm. 

A.  Experiments with One Subject in Two Sessions  

 The first dataset was collected from one subject with 
100ms/50ms image presentation rate and Button/noButton 
response methods. We analyzed the first dataset through two 
sets of experiments. In both experiments, we evaluated the 
Laplacian classifier (LP) and linear logistic regression 
classifier (LN) with the leave-one-out procedure within the 
session to investigate the performance comparison between 
the nonlinear and linear classifiers. 

We performed discrimination between targets and 
distracters for different combinations of presentation rates 
(100ms or 50ms) and response methods (Button or 
noButton). The dataset contains one session of each 
combination (session #1) with 50 samples for 
100ms_Button, 49 samples for 100ms_noButton, 36 samples 
for 50ms_Button, and 46 samples for 50ms_noButton. Also 
a second session of each combination (session #2) contains 
37 samples for 100ms_Button, 47 samples for 
100ms_noButton, 40 samples for 50ms_Button, and 35 
samples for 50ms_noButton. 

The leave-one-out discrimination performance measured 
in terms of area-under-ROC for sessions #1 and #2 are 
shown in Tables 1 and 2. We observe that the Laplacian 
classifier (LP) has an area of 0.90 to 0.96 (maximum 1.00) 
while the linear classifier (LN) only has an area of 0.37 to 
0.66 in session #1 and 0.91 to 0.97 and 0.46 to 0.67 
respectively for session #2. Clearly, the Laplacian classifier 
produces much better performance than the linear logistic 
regression classifier for both sessions. 

 
TABLE 1 

DISCRIMINATION PERFORMANCE FOR SESSION #1 
 100ms 

_Button 
100ms 

_noButton 
50ms 

_Button 
50ms 

_noButton 
 

ROC 
area 

0.90 (LP ) 
0.37 (LN) 

0.95 (LP ) 
0.50 (LN) 

0.95 (LP ) 
0.66 (LN) 

0.96 (LP ) 
0.60 (LN) 

 
TABLE 2 

DISCRIMINATION PERFORMANCE FOR SESSION #2 
 100ms 

_Button 
 

100ms 
_noButton 

 

50ms 
_Button 

 

50ms 
_noButton 

 
ROC 
Area 

0.91(LP ) 
0.65 (LN) 

0.97(LP ) 
0.67 (LN) 

0.93 (LP ) 
0.66 (LN) 

0.94 (LP ) 
0.46 (LN) 

It was observed that using the leave-one-out technique, 
the spectral projection classifier performed similarly to the 
Laplacian classifier, therefore, it is omitted from these 
tables. 

B.   Experiments with Two Subjects  
The second dataset was collected from two subjects. 

There are two sessions for the first subject and three sessions 
for the second subjects. For subject #1, there are 166 
samples for session #1 and 174 samples for session #2.  For 

subject #2, there are 168 samples for session #1, 181 
samples for session #2 and 159 samples for session #3. 

We examined this dataset through two sets of 
experiments. The aim is to compare the performances 
among the different discrimination techniques. 

1)  Five-fold cross-validation within a session 
We evaluated the Laplacian classifier with the five-fold 

crossvalidation technique within a session for two subjects. 
The average area-under-ROC and its standard deviation are 
reported. Tables 3 and 4 provide the performances on 
individual test sets and their statistics for the Laplacian 
classifier applied to measurements from two subjects. The 
nonstationarity in the EEG data is evident from the large 
variation in performance. This also illustrates how leave-
one-out testing could lead to artificially inflated 
performances. 

 
TABLE  3 

DISCRIMINATION PERFORMANCE FOR SUBJECT #1 
   Session#1 Session#2 
ROC  
area 

0.51  0.81   0.74   0.74  0.82 
mean =  0.72 

std = 0.13 

0.79   0.83   0.87   0.85   0.89 
mean =0.84 
std = 0.04 

 
TABLE  4 

DISCRIMINATION PERFORMANCE FOR SUBJECT #2 
 Session#1 Session#2 Session#3 
ROC 
 area 

0.89  0.75  0.80 
0.69  0.74 

mean = 0.77 
std = 0.08 

0.68  0.85  0.79 
0.62  0.77 

mean =0.74 
std = 0.09 

0.87  0.82  0.72 
0.76  0.80 

mean =0.79 
std =0.06 

2) Generalization across sessions 
This study evaluated the session-to session transfer of 

classification performance. In this experiment, we examine 
the three classifier performances across sessions. We first 
investigated training on one session and testing on 
remaining sessions. The discrimination performance for 
subject #1 is described in Table 5 and the discrimination 
performance for subject #2 is described in Table 6. As Table 
5 and Table 6 show, for two subjects, a discriminator trained 
on data from one session generalized well to data from two 
test sessions which were separated by over a twenty minute 
gap. The results indicate that three classifiers approach the 
same performance for across-session performance for both 
subjects. 

 
TABLE  5 

DISCRIMINATION PERFORMANCE FOR SUBJECT #1 
 training on session#1  

and testing on session#2  
training on session#2  

and testing on session#1 
ROC 
area 

0.87 (LP) 
0.89 (SP) 
0.87 (LN) 

0.82 (LP) 
0.82 (SP) 
0.82 (LN) 

 
TABLE  6 

DISCRIMINATION PERFORMANCE FOR SUBJECT #2 
 train on session#1 

and test on 
session #2 #3 

train on session#2 
and test on 

session#1#3 

train on session#3 
and test on 

session#1#2 



 
 

 

ROC 
 area 

0.83 (LP) 
0.86 (SP) 
0.82 (LN) 

0.86 (LP) 
0.85 (SP) 
0.86 (LN) 

0.83 (LP) 
0.83 (SP) 
0.84 (LN) 

 
We also examine the performance of three classifiers 

when trained using data from two sessions and tested on a 
third session for subject #2. The results shown in Table 7 
demonstrate that the three classifiers still perform practically 
identically. For subject #2, when trained on session #2 and 
#3, and tested on session #1, all classifiers approached an 
area under the ROC curve of 0.9. It suggests that we need 
more data for training to get even better performance. 
 

TABLE  7 
DISCRIMINATION PERFORMANCE FOR SUBJECT #2 

 train on session 
#1#2 and test on 

session#3 

train on session 
#1#3 and test on 

session#2 

train on session 
#2#3 and test on 

session#1 
ROC 
area 

0.86 (LP) 
0.86 (SP) 
0.86 (LN) 

0.82 (LP) 
0.82 (SP) 
0.82 (LN) 

0.90 (LP) 
0.88 (SP) 
0.91 (LN) 

IV. CONCLUSION 
We studied the effectiveness of three classifiers on single 

trial ERP detection in the context of RSVP target search in 
large scale imagery databases. The results confirm that 
reliable visual target detection in large image databases is 
feasible with the RSVP paradigm and classification based on 
EEG measurements. The preliminary results presented here 
demonstrate area-under-ROC values over 0.80, which 
corresponds to even higher probability of correct detection 
for balanced datasets (roughly equal number of target-trials 
vs nontarget-trials). The main result of this study is that for 
the limited amounts of data, the two nonlinear classifiers 
that outperformed the linear classifier on the training sets, 
did not generalize across sessions.   

The results of these experiments demonstrated clearly that 
the lack of stationarity in EEG [15] is among the issues that 
need to be addressed properly in feature construction. The 
leave-one-out technique is generally an inadequate method 
for biomedical applications especially when small number of 
samples are utilized (unfortunately this is precisely when 
researchers tend to use it) due to the artificial performance 
inflation observed here. 

The raw temporal signal-based features (commonly used 
in ERP detection) coupled with dense EEG arrays yield very 
high dimensional feature vectors that make it infeasible to 
expect good generalization given the low sample/parameter 
ratio. In summary, given the low number of instances in the 
datasets we have collected, it was preferable to select the 
simpler linear classifier, however, one also expects the 
nonlinear classifiers to start becoming desirable in the future 
when larger training datasets are available for optimizing 
their parameters. 

 The future challenges for this field include extraction of 
fewer more reliable features (perhaps wavelet-based) as well 
as implementation of real-time continuous detection 

algorithm that does not require the centering of the input 
data to the expected position of the target stimuli. 
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