
 

 Abstract—The spatio-temporal mechanisms underlying the 
generation of epileptic seizures is not yet clearly 
understood. In this study, we attempt to quantify the 
spatio-temporal interactions of an epileptic brain by using 
a previously proposed SOM-based Similarity Index (SI) 
measure. We further show that spectral clustering 
approach can be appropriately used to determine the 
average spatial mappings in the brain at different stages of 
a seizure, by interpreting the SOM-SI values as affinity 
matrices. Results involving two pairs of seizures of an 
epileptic patient suggest that there may not be a regular 
pattern associated with channels’s spatio-temporal 
dynamics during the inter-ictal to pre-post ictal transition. 
 

I. INTRODUCTION 
 

 It is becoming clear that epilepsy is a dynamical disease 
[1], i.e. the macroscopic spatio-temporal dynamics across 
different regions of the brain are consistent with rapid, 
sometimes gradual and often very subtle nonlinear dynamical 
interactions. In recent years, a major effort has been directed 
towards understanding the spatio-temporal interactions among 
various critical sites in the brain. One of the main difficulties 
is that the biological systems of interest have nonlinear 
complicated dynamics that can dictate overall changes in the 
system behavior. Synchronization between systems has been 
characterized in a number of different ways [2-6]. Many linear 
and nonlinear approaches have been developed and even 
though observations that EEG cannot be distinguished from 
linearly correlated noise [7] have been made, nonlinear 
approaches have still been able to extract coupling information 
in a manner that would not have been possible by spectral 
approaches.  
Inspired by the similarity–index technique (SI) introduced by 
Arnhold et al. [6], we earlier proposed a SOM based 
computationally efficient measure, SOM-SI [8], to measure 
asymmetric dependencies between time-sequences. 
Conceptually, the SI and the SOM-SI methods rely on the 
assumption that if there is a functional dependency between 
two signals, the neighboring points in the state space of one 
signal maps to the corresponding neighborhoods of its 
counterpart. In other words, if the connection is assumed uni-
directional, several states of the driver signal map onto a 
single state of the response signal. The SI [6] does not imply 
any causal relationship; however, it indicates that the driver 
signal has larger attractor dimension (more degrees of 
freedom) and hence is more active than the response signal. 
The SOM-SI method achieves to reduce the computational 
overhead of the SI by mapping the embedded data from 
signals onto a quantized output space through a SOM [10] 
specialized on these signals, and utilizing the activation of 

SOM neurons to infer about the influence directions between 
the signals. We showed in our previous work [9] that the 
SOM-SI was capable of determining the temporal evolution of 
dependencies between various cortical sites, at different stages 
of a temporal lobe epileptic seizure. In this study, we take a 
step ahead and qualitatively analyze the spatio-temporal 
groupings of channels. We propose a simple but effective 
spatio-temporal clustering model, comprising of spectral 
clustering and markov characterizations. Our approach 
essentially seeks to analyze the grouping of the channels at 
different stages of seizure, based on their average mutual 
interactions. 
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The paper is organized as follows:  We first present a brief 
review of SOM-SI in section II. Section III discusses the 
spectral-clustering approach followed by markov chain 
characterizations in section IV. to determine spatial-temporal 
groupings of channels. In Section V, we present a simple 
simulation and make a subjective assessment of groupings in 
the epileptic ECOG data. Section VI. discusses about potential 
directions for future study. 
 

II. SIMILARITY INDEX (SI) MEASURE 
 
A. Original SI measure 

Assume that X and Y are two time series generated by a 
system, which are embedded into two vector signals in time 
using delays. N(X|Y) is defined as the average dependency of  
X on Y and it can be written as [6], 
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where Rn(X) is the average Euclidean distance between the 
state-vector of Xn and the remaining state-vectors in X. Y-
conditioned Euclidean distance Rn(X|Y) measures the average 
Euclidean distance between Xn  and the vectors in X whose 
corresponding time-partners are the k-nearest neighbors of Yn.  
This measure takes values in [0, 1], where 0 implies no 
coupling and 1 implies perfect synchronization [6]. Average 
dependence of Y on X, N(Y|X), is similarly computed. 

 
III. SPECTRAL CLUSTERING 

 
The SOM-SI on epileptic ECOG data revealed only temporal 
changes in dependency patterns, across different stages of 
seizures [9]. For illustration, we show in Fig. 1, the maximum 
average driving ability of 6 channels, computed for one of the 
patients, P092. We immediately observe that there are no 
obvious spatial patterns, obtained from SOM-SI. As pointed 
out earlier, it is important to characterize the evolving changes 
in spatial patterns of interactions, as well, to get an overall 
sense of how the synchronized systems are spatio-temporally 
clustered. To this extent, we propose a 3-fold approach 



 

 consisting of spatial-discretization of the data using spectral-
clustering technique [5], Markov-chain characterization on 
discretized data followed by K-means clustering (Fig. 2).  
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 Spectral clustering is one of the many clustering methods 
that use subspace decomposition on higher dimensional 
features derived from the data to achieve data-clustering. 
Using kernel methods, the data samples are projected onto a 
higher dimensional space where the discriminant analysis is 
much easier. Spectral clustering is inspired by the normalized 
cut theory in computer science where the distance between the 
nodes is interpreted as an affinity matrix on which subspace 
decomposition yield membership labels of the nodes. 
Although spectral-clustering techniques predominantly use 
euclidean distance measures to form affinity matrices, any 
metric that quantifies the affinity/closeness between two 
spatial structures can also be used for the same. The SOM-SI 
values, by their nature, very clearly represent the degree of 
affinity between two interacting structures. Also, the fact that 
the SOM-SI use Euclidean distance to find similarities 
supports their candidature for being construed as affinity 
matrices. A number of spectral clustering algorithms exist, 
however, in this study, we use the standard spectral clustering 
method by Ng et al. [11] to spatially cluster the similarity-
indices obtained by the SOM-SI technique 
 The output from computing pair-wise SOM-SI on all the 
possible combinations of the multivariate ECOG sources leads 
to a κ matrix of size (k x T), where k = 2*(CN2) indicates the 
# of  SOM-SI pair-wise entries ε[0, 1], computed at time-
instance t ε [t1, t2,…,T].  
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Each column in κ  can be regarded as a square matrix of size 
N x N, where N is the # of channels. Note that the diagonal 
elements representing the affinity of a channel with itself are 
coded as 1. As we can imagine, the asymmetry property of 
SOM-SI will result in an asymmetric affinity matrix. 
However, eigen-decomposition step [11] requires that the 
affinity matrix be square and symmetric in nature. This is 
because the eigen-decomposition yields orthogonal column 
vectors (also called eigenvectors) only if the projection matrix 
is square-symmetric. One of the ways of doing this 
transformation is by adding the matrix to its transpose and 
dividing by 2. Mathematically, the transformation can be be 

represented as 
2

)( Tχχ
δ

+
= . 

 The transformed affinity matrix δ  represents the average 
information exchanged between all pairs of channels. This 
implies that we will not have the luxury of using the 
asymmetric nature of the dependencies to create a membership 
grouping among channels. The averaging of the dependency 
information is nevertheless not going to affect in large because 
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ure 1. Maximum average driving ability of each of the six (6)

annels, nearly 100 minutes before and 70 minutes after Seizure-1
patient P092. (The thin vertical bar corresponds to the time
en seizure occurred (0 to 2 on the x-axis). For clarity, the box
ide the figure shows a small portion of the maximum average

iving ability of each of the 6 channels, baseline-offset by different
les.) Drop in synchronization followed by an abrupt increase in

ase synchronization at the onset of seizure is evident.
nchronization across channels during seizure is also clearly seen.
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ure 2. Block diagram to extract spatio-temporal dependency 
ormation in multivariate ECOG structures 

24 minutes 8 minutes 2 hours, 53 minutes 

Seizure 2 Seizure 3 

093 

1 hour, 10 minutes  54 minutes 1 hours, 46 minutes 
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ure 3.  Graphical illustration of the data analysis on patient P093
gures not drawn up to scale).  Inter-ictal region (shaded): 20
nutes after seizure 2 (correspondingly  seizure 9 ) upto 20
nutes before seizure 3 (correspondingly seizure 10). Pre-Post
al region (shaded): 20 minutes before seizure 3 (or seizure 10)
d 20 minutes after seizure 3 (or seizure 10). 
e earlier observation [9] that there is no major difference 
e driving and receiving information of the channel.  
On the transformed affinity matrixδ , the sub-space 
mposition yields a set of labeled clusters (set to 3 based 
ignificant eigen values) representing the membership of 
hannels. Repeating this procedure on every column in the 
atrix (2) will yield a discrete-valued cluster matrix spectκ . 
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IV. MARKOV-CHAIN MODELING 

 
 Spectral-clustering is a powerful technique to achieve 
spatial-quantization on continuous SOM-SI data. However, 
the task is to be able to detect the channels that on an average, 
exhibit a similar behavior over a specified time-interval. In 
other words, we would like to find out rows of the spectκ  
matrix that are similar with each other over a time interval T. 
We propose a Markov-chain approach as a metric to quantify 
the rows in the spectκ  matrix.   

 As we can observe from the spectκ matrix, the entries 
across the columns indicate the temporal-transition of a 
channel’s interaction between clusters. When there are only 3 
states or clusters, one of the 9 state-transitions are possible; 
namely; (1-1), (1-2), (1-3), (2-1), (2-2), (2-3), (3-1), (3-2), and 
(3-3). The transitions can be characterized by associating a 
probabilistic structure that takes into consideration the 
likelihood of a channel to be in a particular state (marginal 
probability) and the likelihood of making a transition from one 
state to another state (transitional probability). 
Mathematically, on each row of the spectκ matrix, we describe 
the following: 
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where ‘r’ is a particular row in the matrix spectκ  and  Pij 
corresponds to probability of transition from cluster ‘i’ to 
cluster ‘j’ and Pk corresponds to marginal probability of 
cluster ‘k’ . 
 In such a single-memory Markov-chain characterization 
of a channel’s behavior, each channel has a distinct set of 
states and a distinct transition between states. Finding 
similarity between channel interactions is now reduced to 
finding similarity between their Markov models. We observe 
that the product of the transitional probability matrix with the 
corresponding marginal probability vector will result in a 
vector unique to each row and can thus be used to distinguish 
between two Markov characterizations. Mathematically, 
  rr πχ .rA= (9) 
In this particular case, the product will result in a 3-
dimensional vector for each row of the spectκ  matrix. K-
means clustering (or any other simple clustering procedure), 
on a pre-defined number of clusters, in the 3-dimensional 
space will eventually result in the rows corresponding to 
channel-interactions to be clustered. The clustering will enable 
us to know the groups of channels that, in an average sense, 
possess similar behavioral structure. 
 

V. RESULTS 
 

A. Roessler – Lorenz System: In this subsection, we present a 
simple synthetic simulation to demonstrate the validity of the 

spectral-clustering technique to cluster a multivariate time 
series data based on their mutual interactions. Our example 
combines the 6 phase space components, taken together from 
Roessler and Lorenz dynamical systems. The dynamics of 
each system evolve as a result of interactions within their 
components.  An 8x8 SOM is trained on each of the 6 
components (adding some measurement noise as well) to 
recreate their dynamics in phase space. The SOM-SIs is then 
pair wise computed to get a 6x6 SOM-SI affinity matrix. 
Assuming that the number of clusters is apriori known (2 in 
this case), spectral clustering on the SOM-SI affinity matrix 
gives a clear discrimination between Roessler and Lorenz 
systems. The simulation, although is very simple, 
demonstrates the applicability of using SOM-SIs as affinity 
matrix in clustering approach. 

 
B. ECOG data : The spatio-temporal techniques described in 
the previous sections were applied to the SOM-SI data 
(obtained pair wise from 24 channels), computed between 
two-pairs of seizures, in patient P093. The analysis was done 
in the inter-ictal region between two pairs of seizures and also 
on the pre-ictal and post-ictal regions surrounding these 
seizures. The time duration details of analysis are shown in 
fig. 3. In both instances, i.e, during spectral clustering and then 
during K-Means step, the number of clusters were empirically 
chosen to as 3.  
 
P093, Seizure 2&3, Inter-ictal activity: 
C1: {LST1, LST2, LST3, LST4, RST1, LTD7, ROF4} 
C2: {RTD4, RTD6, RTD8, RTD10, LOF1, LOF2, LOF3, LOF4, 
ROF1, ROF2, LTD9}           
C3: {LTD3, LTD5, RST2, RST3, RST4, ROF3} 
 
In cluster C1, all the Left SubTemporal (LST) channels are 
grouped together, while it is easy to see from cluster C2 that all 
the Right Temporal Dept (RTD) and the Left Orbito Frontal 
(LOF) channels exhibit similar dynamical behavior. Cluster C3 
encompasses the Righ Sub Temporal (RST) channels (except 
RST1).  
 
P093, Seizure 2&3, Pre-post ictal activity: 
C1: {RST1, RST2, RST3, RST4, LTD7, LST2, LST3} 
C2: {LTD3, LTD5} 
C3: {RTD4, RTD6, RTD8, RTD10, ROF1, ROF2, ROF3, ROF4, 
LOF1, LOF2, LOF3, LOF4, LST1, LST4, LTD9} 
 
The RTD and the LOF channels, separately continue to be 
clustered in a same group even during the pre-post ictal states. 
In fact, we also observe that the ROF channels belong to the 
same group as the RTD and the LOF channels.  As in the 
inter-ictal activity, the RST channels are closely cluttered 
within the same group. Unlike during the inter-ictal activity, 
the LST channels no longer exhibit a uniform spatio-temporal 
behavior (We consider an area of the brain such as RTD, LTD 
or LOF to be strongly belonging to a particular cluster if more 
than 2 channels out of the 4 channels in each area lie in the 
same cluster).  
Comparing the cluster configuration between inter-ictal and 
the pre-post ictal stages, we see that the RST channels and 



 

LTD channels were similar in terms of the amount of 
information they exchanged with other areas of the brain, over 
the inter-ictal period. However, during the pre-post ictal stage, 
the RST channels may have been closer to the LST channels. 
Overall, it appears that a few areas of the brain such as the 
LST and ROF channels underwent drastic changes in their 
spatio-temporal interactions during the inter-ictal to the pre-
post ictal transition. 
 
P093, Seizure 9&10, Inter-ictal activity: 
C1: {LST1, LST2, LST3, LST4, LOF1, LOF2, LOF3, LOF4, ROF1, 
LTD3, LTD9}     
C2: {RTD4, RTD8, RTD10, ROF2, ROF3, ROF4, LTD5 LTD7, 
RTD6} 
C3: {RST1, RST2, RST3, RST4} 
 
Here, the left hemisphere channels, (particularly LST and the 
LOF channels) are closely connected within a cluster, C1. The 
right hemisphere channels (namely RTD and the ROF 
channels) are also closely connected, in a different cluster C2.  
C3 consists of all the RST channels. Firstly, a clear separation 
between the left and right hemisphere channels is seen and 
secondly, we see that the RST channels behave differently 
from the RTD/ROF channels. When the number of clusters 
was set to 2, the RST channels merged with the other right-
hemisphere channels. This implies that the RST channels have 
very subtle differences with the RTD and ROF channels while 
a clear difference exists between the RST and the left-
hemisphere channels. 
 
P093, Seizure 9&10, Ictal activity: 
C1: {LOF1, LOF2, LOF3, LOF4, LTD3, LTD5, LTD7, LTD9, LST1, 
LST2, LST3, LST4, RTD4, ROF1}   
C2: {RST1, RST2, RST3, RST4, ROF2} 
C3: {RTD6, RTD8, RTD10, ROF3, ROF4} 
 
All the left hemisphere channels namely, the LOF, LST and 
the LTD channels form cluster C1. Similar to the inter-ictal 
activity, the right-hemisphere channels and the left-
hemisphere channels are clearly separated in terms of their 
overall spatio-temporal dynamics. Subtle differences exist 
between cluster configurations in the Inter-ictal and the Pre-
post ictal activity though.  
Overall comparison between inter-ictal and pre-post ictal  
behavior shows a very little difference in the cluster-
configuration of the channels during seizure 10. This probably 
implies that the average spatial-distribution of the electrode 
sites did not have any major changes in the inter-ictal to pre-
post ictal transition. 
 

VI. DISCUSSION 
 

 In this study, we applied the previously proposed SOM-SI 
measure [8] to detect functional dependencies among 
multivariate structures. A spectral-clustering approach was 
adopted to determine how channels are clustered in an interval 
of time, and how the clustering configuration changed with 
time. During inter-ictal to pre-post ictal transition, we 
observed drastic changes in the spatio-temporal configuration 

of a few channels in seizure 2 and 3, while on seizures 9 and 
10, the analyses showed that the transitional changes were 
meager. This probably suggests that there may not be a regular 
pattern associated with channel’s spatio-temporal dynamics 
during the inter-ictal to pre-post ictal transition. However, 
from the analysis on complex partial seizures (9 & 10), we 
find that the left hemisphere channels, for most part, may be 
polarized from the right hemisphere channels. A much larger 
observation is needed from analysis on more seizures and 
more patients. Statistical quantification of the changes in 
spatial-similarity of the ECOG recordings, could give us a 
better understanding of changes in sensory-cortical networks 
during inter-ictal and ictal periods. So far, the SOM-SI 
coupled with the spectral clustering approach seems to provide 
a reasonable description of the spatial connectivity of the brain 
at different stages of a clinical event. We believe that these 
results could be a value addition to the current efforts of 
understanding how the sensory areas are networked with each 
other, at different times and during different clinical events. 
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