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ABSTRACT
Motion estimation in video coding can be formulated as an
optimization problem. Recently, a motion estimation scheme
that uses Renyi’s error entropy as the optimization criterion,
was proposed [1]. Motivated by [1], in this paper, we propose
a different criterion in motion estimation, i.e., the criterion of
maximum mutual information. Based on this new criterion,
we design a motion estimation algorithm. Our results show
that our algorithm achieves significantly lower computational
complexity compared to existing fast-search methods for mo-
tion estimation. A salient feature of our algorithm is that it is
ideally suited for wireless video sensor networks where lim-
ited bandwidth, restricted computational capability, and lim-
ited battery power supply pose stringent constraints on the
system.

1. INTRODUCTION

Recently there has been a considerable increase in manufac-
turing and use of mobile communication devices equipped
with video cameras. The last several years see a surging in-
terest in transmission of video over wireless network. Many
of the mobile communication devices are small and battery
operated. Therefore they have only a limited amount of
power and low computation capability. This pushes the needs
for more efficient video compression algorithms.

To achieve coding efficiency, intra-frame coding and
inter-frame coding are utilized to reduce spatial redundancy
within a single frame and temporal redundancy between ad-
jacent frames. As a key component of most video compres-
sion systems, motion estimation exploits the temporal redun-
dancy by predicting the subsequent frames from reference
frames. Motion estimation constitutes 70% of the computa-
tion load in encoder [3]. Thus for resource-constrained wire-
less video applications, there is an urgent need for motion
estimation scheme with low computation complexity.

Block-based motion estimation schemes are the most
widely used technique. In schemes of this category, each
video frame is divided into blocks. All the pixels in the block
are assumed to undergo the same translational motion spec-
ified by the motion vector of this block. The motion vector
is estimated by searching for the best matching block within
a search window centered on the corresponding block in the
reference frame. Thus each block can be predicted from the
previously coded reference frame based on the motion vector
of the block. And the prediction error is coded with intra-
frame coding techniques.

In wireless video applications, an exhaustive search may
be neither realistic due to its formidable computation com-
plexity, nor cost-effective as the motion is not completely

random. Many algorithms were developed to perform motion
estimation with reduced computational complexity, among
which are two-dimensional logarithmic (TDL) search [5],
block-based gradient descent search [6], three-step search
[7], a new three-step search (TSS) [8], the four-step (4SS)
search [10], to name a few.

But all the block-based motion estimation algorithms
mentioned above do not effectively utilize the knowledge
gained in calculating the motion vectors from one frame to
the next. For each search, they usually reset their memory
and start from the same initial conditions.

One way to fully utilize the information gained from the
past frames for the estimation of future frames is to formulate
the motion estimation problem as an adaptive filtering prob-
lem. In such a video compression system, motion vectors are
modeled by an adaptive system, in contrast to no modeling
of motion vectors in traditional approaches. With this formu-
lation, we present in this paper a new approach to determine
the motion vector in information-theoretic frameworks. The
advantage of our scheme lies mainly in the extremely low
computation complexity it achieves. Furthermore, since the
motion vector model is to be replicated at the decoder given
knowledge about the initial conditions, there is no need to
transmit motion vectors! This provides savings in bandwidth
on top of the saving in computation.

The remainder of the paper is organized as follows. In
Section 2, we introduce adaptive systems used for motion
estimation. In Section 3, we derive our adaptive motion
estimation algorithm using a maximum mutual information
criterion and analyze the computational complexity of the
scheme. In Section 4, we present the simulation results of
our algorithm and compare it with the existing schemes in
terms of root mean squared error (RMSE). Section 5 con-
cludes the paper.

2. MOTION ESTIMATION PROBLEM IN AN
ADAPTIVE SYSTEM FRAMEWORK

Adaptive filters have been successfully used in various re-
search areas including signal processing, telecommunication,
system identification, and automated control. In this section,
we formulate the motion estimation problem in an adaptive
system framework.

Let f (p,n) denote the image intensity at spatio-temporal
position (p,n), where p = [x,y] is the pixel location in 2-
dimensional space,n is the time index. Given two suc-
cessive framesf (n) and f (n+ 1), a motion vector (MV)
d(n) = [dx(n),dy(n)] is defined for each pixel as the 2-D vec-
tor field that maps the point inf (n) onto their corresponding
location in f (n+1). Our goal is to find an estimate ofd based



on values off (n) and f (n+1), so that some pre-defined cost
functionJ is optimized.

Delay fp(p, n+1)=f(p+d, n)
f(p,n+1) f(p,n)

+
-

J(fp(p,n+1),f(p,n+1))

e(n+1)

Figure 1: Adaptive Motion Estimation System Diagram

The block diagram of a general adaptive prediction sys-
tem is shown in Fig. 1. The filter input is the intensity func-
tion of the most recent frame,f (p,n). For the adaptive fil-
ter, the desired output is the intensity function of the present
frame f (p,n+ 1) . At some discrete time, n+1, the output
of the filter, fp(p,n+ 1), is the estimate of thef (p,n+ 1)
given its most recent valuesf (p,n). The estimation error,
e(n+1) is defined as the difference between the filter output
fp(p,n+1), and the desired outputf (p,n+1). J( fp(p,n+
1), f (p,n+1)) is the optimization criterion, which is a func-
tion of fp(p,n+1) and f (p,n+1) .

The equation for the motion estimation system described
above can be expressed as follows

fp(p,n+1) = f (p+d(n),n) (1)

e(p,n+1) = f (p,n+1)− fp(p,n+1) (2)

fr(p,n+1) = fp(p,n+1)+e(p,n+1) (3)

d(n+1) = d(n)+η
∂J

∂d(n)
(4)

where fr(p,n+ 1) is the reconstructed value for the pixel at
location p in framen+ 1, andη is the updating step size.
For the same initial conditions and error-free transmission
over the channel, both encoder and decoder can obtain the
same motion vectors in real-time, thereby avoiding the need
for transmitting them to the decoder. So, only error signale
will be transmitted. In reality, due to bandwidth restriction,
the error signal is quantized and it leads to error accumula-
tion in image reconstruction. This problem can be solved by
introducing intra frames periodically. Note that in this paper,
our discussion is focused on motion estimation under the as-
sumption that lossless transmission is used for error signal.

Given the system equations, if the cost function takes the
form of mean square error (MSE) and is represented asJ(e),
we get the popular LMS algorithm. Recently, Renyi’s error
entropy has been proposed as an alternative optimization cri-
terion for system modeling [2]. Based on this criterion, the
minimum error entropy motion estimation scheme was de-
veloped in [1] to achieve low computation complexity.

Motivated by all these works, we use another informa-
tion theoretic criterion, i.e., mutual information, to develop
our scheme. The intuition behind this is when the mutual
information between the predicted signalfp(p,n+ 1) and
real signalf (p,n+1) is maximized, the predicted frame will
preserve the most information about the real frame, thus ob-
tain the optimal prediction. However, there are no analytical
methods to calculate mutual information without presuming
knowledge of prior probability density function (pdf). To

avoid this, we use a non-parametric mutual information esti-
mator with Parzen Windowing, which can be applied directly
to data samples without imposing any assumptions about the
pdf of the data. Thus the method can manipulate information
as straightforwardly as the mean square error (MSE) crite-
rion. Straightforward methods that use the Quadratic Renyi’s
entropy in a way similar to LMS method have been devel-
oped in [2]. We follow this approach to develop our motion
estimation scheme in the next section.

3. MOTION ESTIMATION SCHEME BY
MAXIMIZING MUTUAL INFORMATION

This section is organized as follows. First, a brief review
of non-parametric pdf estimator with Parzen windowing is
given. It is followed by the proposal of mutual information
as the cost function for the motion estimation system. Fol-
lowing this is the derivation of the stochastic gradient estima-
tor of the cost function with respective to the motion vector.
Finally, we give the complexity analysis.

3.1 Non-parametric pdf estimator

Given samples of random variablesx andy, one way to esti-
mate the data pdf lies in the use of Parzen Window method.
For 2-D random vectorz= (x,y)T , givenN pairs of samples,
the pdf can be approximated by Parzen windowing estimator
with Gaussian kernel with zero mean and covariance matrix
Σ,

pX,Y(x,y) =
1
N

N

∑
i=1

GΣ(x−xi ,y−yi) (5)

whereGΣ is the Gaussian kernel with zero mean and covari-
ance matrixΣ in Parzen windowing.

Similarly, the marginal pdf of random variablex, y can
be approximated as

pX(x) =
1
N

N

∑
i=1

Gσ2
X
(x−xi) (6)

pY(y) =
1
N

N

∑
i=1

Gσ2
Y
(y−yi) (7)

whereσ2
X = Σ11 andσ2

Y = Σ22 are the kernel variance ofx
andy respectively.

Thus the pdf estimators solely based on the data without
assuming anya prior knowledge of the distribution of the
data are obtained. This estimator is used in the development
of stochastic gradient estimator.

3.2 Mutual information as a cost function

Mutual information is widely used as a measurement of the
similarities or discrepancies. According to Shannon’s defin-
ition of mutual information, for two random variablex and
y,

Is(x;y) =
∫ ∫

pX,Y(x,y) log
pX,Y(x,y)

pX(x)pY(y)
dxdy (8)

wherepX,Y(x,y) is the joint pdf of x,y, andpX(x) andpY(y)
are the marginal pdf’s of x,y respectively. Equation (8) can
be simplified as

Is(x;y) = E (log
pX,Y(x,y)

pX(x)pY(y)
) (9)



In image processing, the maximum mutual information cri-
terion has been used successfully to solve the problem of im-
age registration. In the motion estimation problem, it seems
to us that the mutual information between the system out-
put fp(p,n+ 1) and the desired outputf (p,n+ 1) is a nat-
ural criterion, thus by maximizing the mutual information
Is( fp(p,n+ 1), f (p,n+ 1)), the optimal motion vectord∗
could be obtained.

3.3 Stochastic gradient estimator of mutual information

In [2], a stochastic gradient estimator was developed by ap-
plying the complexity reduction techniques to Renyi’s en-
tropy of error signal. For random variablex and y, when
only two pairs of samples of(x,y)T are available, the non-
parametric pdf estimator could be obtained as in Section
3.1. And by applying the same technique as in [2], a non-
parametric stochastic estimator for mutual information is ob-
tained:

Is(x;y)≈ log
GΣ(x j −xi ,y j −yi)

GΣ11(x j −xi)GΣ22(y j −yi)
(10)

By far we have obtained a non-parametric estimator of
Is(x;y), the mutual information betweenx and y. As de-
scribed in Section 3.2, to develop an online adaptation al-
gorithm for the adaptive system shown in Fig.1, we take

J( fp(p,n+1), f (p,n+1)) = Is( fp(p,n+1); f (p,n+1))
(11)

Substitutingfp(p,n+1) and f (p,n+1) for x andy in Equa-
tion (10), we obtain the cost function based on the most re-
cent frames only:

J( fp(p,n+1), f (p,n+1))

= log
GΣ( fp(p,n+1)− fp(p,n), f (p,n+1)− f (p,n))

GΣ11( fp(p,n+1)− fp(p,n))GΣ22( f (p,n+1)− f (p,n))
(12)

where fp(p,n+ 1) and fp(p,n) are obtained from Equation
(1) by mapping the pixel on the framef (p,n) and f (p,n−1)
to fp(n+ 1) and fp(n) knowing motion vectord(p,n) and
d(p,n−1), respectively.

The parameter to be determined isd(p,n). Note that here
d(p,n− 1) is a known constant at this time, since it is the
displacement from the previous frame.

Let
K1 = GΣ( fp(p,n+1)− fp(p,n), f (p,n+1)− f (p,n)),
K2 = GΣ11( fp(p,n+1)− fp(p,n)),
K3 = GΣ22( f (p,n+1)− f (p,n)).
By observing Equation (12), we find that among these three
terms, onlyK1 andK2 depend ond(p,n). Thus we derive the
partial derivatives with respect tod(p,n) as

∂J
∂d(p,n)

=
∂K1

∂d(p,n)

K1
−

∂K2
∂d(p,n)

K2

(13)

where

∂K1

∂d(p,n)
=

−K1 · ((Σ′
12+Σ

′
21)( f (p,n+1)− f (p,n))

+2Σ
′
22( f (p+d(p,n),n)− f (p+d(p,n−1),n−1)))[

( f (p+e1,n)− f (p−e1,n))/2
( f (p+e2,n)− f (p−e2,n))/2

]

(14)

and

∂K2

∂d(p,n)
=

− 1
Σ11

K2 · ( f (p+d(p,n)− f (p+d(p,n−1),n−1))[
( f (p+e1,n)− f (p−e1,n))/2
( f (p+e2,n)− f (p−e2,n))/2

]

(15)
whereΣ′

= Σ−1, the inverse matrix ofΣ, e1 = [1,0]T , e2 =
[0,1]T . Thus we obtain a simple expression of the stochastic
gradient:

∂J
∂d(p,n)

=

(− 1
Σ11

( f (p+d(p,n),n)− f (p+d(p,n−1),n−1))

−((Σ
′
12+Σ

′
21)( f (p,n+1)− f (p,n))

+2Σ
′
22( f (p+d(p,n),n)− f (p+d(p,n−1),n−1))))[

( f (p+e1,n)− f (p−e1,n))/2
( f (p+e2,n)− f (p−e2,n))/2

]

(16)
So far we have obtained an stochastic gradient estimator

for the cost functionJ with respect to motion vectord(p,n)
by following a methodology similar to the minimum Renyi’s
error entropy algorithm described in [2].

Finally, by substituting Equation (16) in Equations (1)
to (4), and imposing a smoothness constraint that the neigh-
boring motion vectors cannot differ by more than a pre-
determined threshold, we obtain the Maximum Mutual In-
formation (MaxMI) motion estimation scheme.

3.4 Computational complexity analysis

By examining Equation (4) and Equation (16), we find that
on the encoder side, each pixel takes 15 operations for one
frame. Table 1 shows the number of operations of the en-
coder and decoder of different schemes in the worst case, as-
suming that the search range is 16x16 and block size is 3x3.
The minimum error entropy scheme(MinEE) proposed in [1]
is also listed below.

Table 1: Number of instructions per pixel.
Method Encoder Decoder
EBMA 3267 2

Block-based Gradient Descent 252 2
Three Step Search 99 2

MinEE 15 15
MaxMI 15 15

This results shows that compared to Exhaustive Block
Matching Algorithm (EBMA), Block-based Gradient De-
scent, and TSS, MaxMI and MinEE algorithms achieve ex-
tremely low computation complexity on the encoder, and
much higher computation complexity on the decoder. This
makes it ideal for the applications where the encoders are
resource-constrained, e.g., wireless video sensors and mo-
bile phones, while the decoders are more sophisticated and
not much constrained by power supply, e.g., base stations.

4. SIMULATION RESULTS

In this section, we implement our adaptive motion estimation
algorithm as described in Section 3. We choose the lumi-
nance component of several video sequences in QCIF format



for the encoding process. For EBMA, a block size of 8x8 is
chosen with integer-pel accuracy. The search range is 16x16
pixels. The block-based gradient descent search algorithm is
implemented as described in [6] with a block size of 3x3 and
a search range of 16x16 pixels with integer-pel accuracy. For
the three-step algorithm [7], we use a block size of 8x8 and a
search range of 16x16 pixels with integer-pel accuracy. The
mean absolute error (MAE) distortion function is used as the
block distortion measure for the two algorithms. Since we
focus on the study of motion estimation, hence DCT, quanti-
zation and entropy coding are excluded in the simulation.

In each algorithm, motion is estimated and compensated
using perfectly reconstructed reference frames. The first
frame is intra-coded and the rest, inter-coded. The experi-
ment is conducted using frame rates of 10, 5 and 2, respec-
tively. The values of root mean squared error (RMSE) for
the four different QCIF sequences are shown in Tables 2, 3
and 4. The preliminary results show that the RMSE of our

Table 2: RMSE for 4 test video sequences at 10 fps
Method Miss Coastguard Suzie Foreman

America
EBMA 2.88 9.29 4.92 8.16

Three-step 4.06 12.14 9.57 16.24
Gradient Descent 6.78 14.27 16.28 23.69

MinEE 6.19 20.66 12.49 20.92
MaxMI 6.07 21.03 12.08 20.73

Table 3: RMSE for 4 test video sequences at 5 fps
Method Miss Coastguard Suzie Foreman

America
EBMA 3.16 11.18 6.35 11.00

Three-step 5.28 11.94 12.93 21.96
Gradient Descent 8.51 18.03 19.32 28.55

MinEE 8.85 24.95 17.68 29.14
MaxMI 8.79 23.01 20.16 29.98

Table 4: RMSE for 4 test video sequences at 2 fps
EBMA 3.63 14.29 8.69 17.91

Three-step 9.71 23.39 17.99 31.92
Gradient Descent 12.40 22.18 24.10 37.76

MinEE 13.06 29.75 24.92 39.59
MaxMI 14.42 27.75 22.02 36.28

algorithm is larger than that of the three-step search. How-
ever, our scheme does not require the transmission of motion
vectors, which usually constitutes about 50% of the total bit
budget for low bit-rate video applications, leading to saving
of bandwidth.

5. CONCLUSIONS

Motion estimation is a critical problem in the design of a
video encoder. In this paper, we proposed to use maximum
mutual information as an optimization criterion to solve the
motion estimation problem in the framework of adaptive sys-
tem and derived a completely new scheme with low com-
putation complexity. In this scheme, the motion vectors of
the current frame are iteratively computed from the previ-
ous frame, resulting in computational savings because of the
knowledge gained in the computation of the previous mo-
tion vectors. And because the motion vectors are generated
automatically on the decoder side and need not be transmit-
ted, bandwidth savings is significant. Our results showed that

our scheme reduces the computational complexity on the en-
coder side significantly as compared to the existing fast algo-
rithms.

The nice feature of adaptive motion estimation algorithm
is its very low computational complexity, which makes it ide-
ally suited for wireless video applications, in which compu-
tational complexity and energy consumption pose major con-
straints on the system. With the emergence of wireless video
sensor networks, we expect that our algorithm will find wide-
spread applications.
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