ROBUST MATCHED FILTERING IN THE FEATURE SPACE
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ABSTRACT In feature space, a discriminant test statistic is formed as
mthe inner product between two hyperplanes constructed us-

in noise is solved in a high dimensional transformed (fea!"9 the nonlinearly transformed template and observations,
ture) space. The proposed test statistic is the inner pro(ﬁ_espectlvely. After applying thkernel trickthe test statistic

uct between two hyperplanes constructed using the nonliffurns out to be a simple quadratic form. The optimal linear

early transformed template and observations, which becom@EQi€ctions are obtained by maximizing the Fisher discrimi-
a simple quadratic form after applying tkernel trick To nant analysis (FDA) criterion [8]. Under the Gaussian noise

obtain the optimal projections for the template and the obseﬁ)s}sﬁlne“%ﬂggr:; i:ln%o\s/gir?z!\iégsdﬁrrlig:rcelzgiidﬁ?ggheexs?sre?r?ie%n;n
vations we maximize the Fisher discriminant analysis (FDA ) : e P
ations we maximize the Fisher disc ant analysis ( )garanve technique to maximize the kernel FDA (K-FDA) cri-

criterion in the feature space. Under the white Gaussian noig& '8 .
rion is applied.

assumption, closed-form expressions for the means and i@ ! .
Interestingly, the analysis of the results show that the op-

variances under each hypothesis are obtained, and an iter-

ative procedure to get the optimal projections is proposeot!mal projections obtained through FDA preserve in the fea-

Interestingly, the analysis of the results shows that the optiUré SPace the temporal structure of the waveform, which is a
gy y P rucial information for this problem. An additional advan-

mal projections preserve the information about the originaf . : :
waveform shape. This can be used to simplify the optimizal@9€ Of solving this type of problems in the feature space
duced by the reproducing Gaussian kernel is an increased

tion procedure since one of the projectors can be fixed it e i
advance. Some simulation results indicate that the propos&@PUstness againstimpulse noise.

test statistic achieves the optimal performance of the linear

matched filter under Gaussian noise, but shows an increaséd DETECTION OF A KNOWN WAVEFORM IN THE

robustness against impulsive noise distributions. FEATURE SPACE

We consider the problem of detecting a known deterministic
1. INTRODUCTION signalsg, corrupted by a zero-mean white additive naige

The detection of a known waveform in noise is a fundamen\—Nith. pf fN(T)’ l.e., we have the following binary hypothesis
tal problem with a wide range of applications such as comieStlng problem [1]

In this paper the problem of detecting a known wavefor

munications, radar and biomedical signal processing [1], [2]. . _ _a
Under the assumption of additive Gaussian noise, the opti- Hl: e = St k=1--N
mal solution is given by the matched filter, which is the lin- Ho: e = s k=1,---N

ear filter that maximizes the signal-to-noise ratio at its out- L . . . .
put. However, when the interference is non-Gaussian the ! the noise is Gaussian, the optimal linear filter for de-
optimum detector is, in general, nonlinear and depends ofCtion is given by the matched filték = sy-1-«, and the
the noise distribution [3]. In addition, if the waveform suf- corresponding test statistic is
fers some nonlinear distortion the matched filter is not op-
timal anymore. In this situation a test statistic that extracts
all the higher order moments, such as the recently proposed
quadratic mutual information (QMI) [4], outperforms the lin-
ear matched filter. where we have definadands as column vectors containing

In this paper we describe a new solution for matched filthe observations and the original waveform, respectively.
tering in a feature (transformed) space. The idea of using a If the transmitted signal suffers a nonlinear distortion or
nonlinear transformation to a high dimensional feature spacge noise distribution is white but not Gaussian, the matched
where a solution can be found was properly motivated by stéflter is not optimal anymore and its performance is expected
tistical learning theory [5], and has been successfully appliegb degrade. In these situations, it has been recently shown
to a number of applications ranging from face identificationthat a nonlinear criterion based on the Cauchy-Schwartz
bioinformatics, marketing, data mining and communicationgjuadratic mutual information (QMI) between the observa-
[6], [7]. tions and the template signal, outperforms the matched filter
This work was supported by MEC (Ministerio de Edudacy Gien [4]. However, the QMI criterion operates on the template and
cia) under grant PR5884-0364,yby MCYT (Ministerio deuCierb:cia y Tec-the obseryaﬂpns_as ifthey were i.i.d samples drawn f.rom two
nologa) under grants TIC2001-0751-C04-03 and TEC2004-06451-cosdifferent distributions. Therefore, QMI does not take into ac-
02/TCM, and by NSF grant ECS-0300340. count the time information conveyed by the waveform tem-

N
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plate, which is crucial for this particular problem. This ex-  In matrix form, Eq. (1) can be written as

plains why in the linear case under Gaussian noise the QMI

criterion provides either similar or worse results than the lin- T(r)= 3TKa (2)
ear matched filter [4].

In this paper we explore an alternative approach thajyhere g7 = (B;,...,x), o = (a4,...,on) andK is the
looks for optimal detectors in a feature (transformed) spacqernel matrix with elements (j, k) = ko (Sj — ri).

To this end, the input data spagis mapped into a much Now the problem reduces to obtain the optimal coeffi-
higher dimensional feature spage cientsf anda. In the following section we propose to apply
R T, x— DX), ;sdher linear discriminant analysis in the feature space to this

where the dot product between feature vectors can
be computed using a positive definite kernel function 3- KERNEL FISHER DISCRIMINANT ANALYSIS
(@(x),®(y)) = k(x,y). This is the so-callekkernel trick 31 |ntroduction
which allows us to obtain nonlinear versions of linear al- . ) . o . ) i
gorithms that can be expressed in terms of inner product§—,he signal to noise ratio is the criterion maxlmlgeq in the lin-
without knowing the exact mappird. ear case; howgver, in the feature space this criterion does not
Fig. 1 represents the nonlinear mapping applied to théake sense, since obvioushfs, +ny) # ®(s) + P(ni) and
template and the observations. Typically, to solve any probtherefore it is difficult to define a meaningfBNRmeasure.
lem in the feature space a cost function involving an empirA more reasonable criterion would be to apply Fisher dis-
ical risk term and a quadratic regularizer is considered. If§fiminantanalysis (FDA) [8], which seeks a linear projection
this situation, the Representer Theorem [11] shows that thEom the original space into a low dimensional space by max-
optimal solution can be written as an expansion in terms ofhizing the between-class scatter (the squared difference be-

the input examples. We use this idea to construct a templaf#/€en the means for the classes), while simultaneously mini-
hyperplane mizing the within-class scatter (the sum of variances for each

N class). Therefore, the function to be maximized for FDA is
ws= > Bj®(s)),
=1

)2
) Jepa = max%. (3)
as well as an observation hyperplane 05 + 01
N When applied in the feature space, linear FDA becomes
Wy = z o4 P(r). kernel FDA (K-FDA), which was first proposed in [9] and
& later generalized to the multiclass problem in [10]. The ap-

plication of K-FDA to our detection problem is somehow
different to that of previous approaches, since here we are
trying to optimize two projectors: one for the templagg,

and one for the observations, whereas in the conventional
K-FDA only one linear projector is sought [9],[10]. In addi-
tion, the conventional K-FDA problem finds the optimal pro-
jection using a set of labeled data for each class, while here
we only have the template waveform and some information
about the noise distribution.

3.2 Fisher’s cost function and optimization procedure

Under hypothesisly (only noise is present) the mean value
for the test statistic is

Figure 1: Test statistic in the feature space. N
Ho= 3 OoxBiE[Kro(sj— )]
k,j=1

Then, a new statistic for the decision can be formed in thef the noise is normally distributed with zero mean and vari-
feature space as the inner product between both hyperplanegices?, then the following result can be easily obtained
ie.,

pd
zZ
pd

E Ko (s — 1] = < (S}, @
T =

Bjou (®(s)), D(r)) = Bjocie(sj — 1),
k=1j=1

M=

1
) wherec’ = \/02+ 2. Therefore, the mean value undéy

where in the last equality we have used el trick ~ Can be written in matrix form as

Without loss of generality, here we will only consider a

_pT¥e
translation-invariant Gaussian kernel with kernel size Ho=pB Koo,
(X,y)Z whereKj is anN x N matrix whose(j,k) element is given

Ko(X—y) = exp—— 5. by (4).



Similarly, under hypothesidl; we obtain 3.3 A simplified procedure

L1 = ﬁTKW, Let us consider that the transmitted waveform is a Gaussian
o pulses = exp(—t?), wheret = —5:0.25 : 5. This signal is
where now the elements &, are given by received in AWGN and the signal to noise ratio was set to
o G SNR= 10dB. Fig. 2 shows the optim#l anda obtained by
Ki(j,k) = EK};/(Sj - ). applying the proposed K-FDA detector to this example (the

regularization parameter was= le— 5 and the kernel size
Let us note that, whil& is a rank-one matrixiK; willbein ~ wasc? = 5).
general full-rank. The squared difference between the means, We can see that both curves look like the original Gaus-
which is the numerator of the FDA cost function (3), is givensian pulse; in factg (i.e. the projector for the observations)
by is indistinguishable (up to a scale factor) from the original
s T o \T ool = waveform. This observation, which has been corroborated in

(u1—po)*=a’ (Ki—Ko) BB (Ki—Ko)a. (5) a number of examples, allows us to simplify the optimiza-
tion procedure to gat andf. In particular, we can fixt = s
and then the optimg8 can be obtained in a single step by
By switching the order of the multiplicative terms, Eq. (5) solving the GEV problem (9). With this simplification, only
can be also written as matricesQ for i = 0,1 (see Appendix A) are needed in the

K -K KK optimization procedure.
(Nl—HO)ZZﬁT(Kl—KO)(xaT(Kl_KO)Tﬁ. ptimization p u

Hi1—Ho Hi—Ho

In a parallel way, the variance under hypothdsisfor 05l
i =0,1 can be obtained as '
of =a'E {(Ki ~-Ki)"BB (K, —Ki)} o= aTQﬁi(L o4r
(6) 03l
where we have used the notati(‘z;]f|i to stress the depen-
dence org. Alternatively, the variance could have been ob- 0.2r
tained as
of, = BE [(Ki —Kiaa" (Ky —Ki)T] p = BTQf B. >
Under the assumption of white Gaussian noise, the matrices or
Qiﬁ andQ/* can be computed in closed form (due to the lack
of space we do not include here the derivation). -0.1

After substituting the means and variances in (3), the cost
fUnCtion fOI’ K-FDA becomes a nonlinear funCtion @fand Figure 2: Opt|ma| Va|ues (Ik and‘B for the Gaussian pu|se_
B, which must be iteratively solved to get the optimal solu-
tion. More specifically, if we consides fixed we can write

a’SPa % 4. SIMULATION RESULTS

ol (Qli3 +Qg) o In this section we compare the performance of the proposed
1 - kernel Fisher discriminant analysis (K-FDA) statistic with

where we have define®f = (K1 —Ko) BpT (Ki—Kp). that of the conventional linear matched filter (MF) and the

recently proposed quadratic mutual information (QMI) esti-

Itis easy to show tha" is positive definite anféQl T QO) mator [4], for different known signal waveforms and under

is semidefinite positive, therefore (7) is a generalizedjifferent noise distributions (Gaussian and impulsive).
Rayleigh quotient, whose maximum is given by the eigen-  The QMI is defined as
vector corresponding to the maximum eigenvalue of the fol- - o

[ [ f2x(s,r)dsdr[ [ f2(s)f3(r)drds

lowing generalized eigenvalue (GEV) problem
(J [ fsr(s1) fs(s) fr(r)dsdn)?

p 4 I) a=2ASPa 8
(Ql Qo tH 7 ®) and it measures nonlinear dependencies between the obser-

whereyu is a small positive constant which has been intro-vationsry and the signas. In fact, it measures the corre-
duced to avoid numerical issues in the solution of the GEMation between the joint pdf dR andS and the product of
problem as well as to impose additional capacity control irtheir marginals [4].
the space of solutions. We consider again the Gaussian waveform of Section 3.3.

The value ofa obtained in this way, is used to estimate All the results shown for the K-FDA detector have been ob-
Q¢ and Qf and a new solution fof is now obtained by tained witho? = 5 andu = 1le— 5 (regularization parameter)

J<—Fpa(e,B) =

(10

I —}Io
QM = 5 g

solving the following GEV problem using the simplified procedure described in Section 3.3.
In order to evaluate the performance of K-FDA under
(Qf +Qg +ul) B =AS“B ©) impulsive noise, we have considered the following Gaussian

whereS” = (K; — Ko) aa” (K1~ Ko)'. The procedureis ™" model

repeated until convergence. fn(n) = (1—€)N(0,06%) +&eN(0,62)



wheree measures the percentage of noise spikescsfn‘d> ferences.
oZ. In our simulations we have used= 0.15 andos = Although we have focused this study on the matched fil-
5002. tering problem, we think that similar ideas could be applied

Fig. 3 shows the receiver operating characteristic (ROC{C Solve prediction or identification problems in the feature
curves for MF, QMI and K-FDA, when the waveform is dis- SPaC€: this seems to be an interesting line for further re-
torted by AWG noise or impulsive noise; in both situationsS€arch.
the SNRwas set to 10 dB. Under Gaussian noise, obviously APPENDIX A
the MF is the optimal test statistic for the problem. We can
see that the K-FDA detector, although obtained in a comynder the Gaussian noise assumption it can be shown that
pletely different way, provides the same performance. Ong is a matrix with elements
the other hand the QMI is not able to achieve the optimal
performance in the linear case. When the noise is impulsive - ) S +S;j o
the proposed K-FDA detector clearly outperforms the linearQq (i, J) = ||a|[5 (chl(S7sj)K62 (2»0> —Goli, J))
matched filter. This increased robustness against impulsive
noi;e is attributeq to the fact that when an outlier_is present.indQ% has elements
the inner product in the feature space computed via the Gaus-
sian kernel tends to be zero (i.&(s — rg) ~ 0 whenry has

S +Sj — 25 0

N
alarge value). Q1) = 5 o (15, (3522.0) Gl

Gaussian waveform, SNR=10dB__

wherey = -2, of = 20% and 6 = o} + 6%/2 and .
2

Gm(i, j =) Km(i,1)Km(j,1), form=0,1.
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