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ABSTRACT 

 The traditional matched filter is the optimal signal de-
tector under quite restrictive conditions, such as linearity 
and Gaussianity. In this paper, a nonlinear filter topology 
based on mutual information is proposed to exploit higher 
order statistics instead of linear second-order measures. Re-
sults demonstrate superior performance in nonlinear ampli-
tude and temporal signal distortion situations. 
  

1. INTRODUCTION 
Detection of a known waveform in noise is an important 

fundamental problem having a wide range of applications, 
communications, radar, and biomedical engineering to name 
just a few. Under the additive white Gaussian noise (AWGN) 
and linear channel assumptions, optimal detection is 
achieved by the conventional matched filter. However, if the 
noise distribution is non-Gaussian or the waveform suffers a 
nonlinear distortion, the matched filter becomes sub-optimal 
in signal detection performance, since it relies on correlation. 
Besides, the matched filter method, by definition, assumes 
that the exact form of signal that is to be detected is known 
and time invariant. To overcome these shortcomings of the 
matched filter, we propose a nonlinear filter topology based 
on a mutual information (MI) criterion. 

In earlier work, it is demonstrated that MI-based meth-
ods are superior to the second order statistical measures in 
nonlinear signal processing [1].  Hence, in detection of 
nonlinearly distorted signals in noise, a suitable criterion is 
the mutual information (MI) between the filter output and the 
class label (throughout the paper class refers to the two cases 
of the signel being present or not in the received signal and 
the class label for these cases are 1 and 0, respectively). This 
choice is motivated by lower and upper bounds in informa-
tion theory that relate this quantity to probability of classifi-
cation error. In principle, MI measures nonlinear dependen-
cies between a set of random variables taking higher order 
statistical structures existing in the data into account, as op-
posed to linear and second-order statistical measures such as 
correlation and covariance [2]. 
 In this paper, we propose a method for determining an 
optimal nonlinear filter that maximizes the Shannon mutual 
information between the filter output and the class label, 
hence improves the signal detection and false alarm perform-
ance for nonlinear channels and non-Gaussian noise distribu-
tions. Illustrative performance comparisons are carried out 
using typical nonlinearities and noise distributions assumed 
in communication channel models. 
 

2. THEORETICAL BACKGROUND  
 In pattern recognition, it is well known that the average 
probability of classification error is related to the MI be-
tween the feature vectors and the class labels. Specifically, 
Fano’s and Hellman & Raviv’s bounds demonstrate that 
probability of error is bounded from below and above by 
quantities that depend on the Shannon MI between these 
variables [3,4]. Maximizing this MI reduces both bounds, 
therefore, forces the probability of error to decrease. 
 Although Shannon’s MI is traditionally used as a meas-
ure of shared information, fundamentally it is a measure of 
divergence from independence for two random variables.  In 
this nonlinear filtering approach, we are interested in the MI 
between the continuous-valued y, which is the nonlinear fil-
ter output, and the discrete-valued class label c. Shannon MI 
between y and c is defined in terms of the entropies of the 
overall data and the individual classes as [2]: 
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where pc are the prior class probabilities. The Shannon en-
tropy is given by 
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where p(y|c) are the class conditional distributions and the 
overall data distribution is 
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Under this framework of nonlinear filtering that maxi-
mizes mutual information of the output with class labels, the 
adaptive learning procedure to find these optimal projections 
follows the block diagram shown in Fig. 1. First, the input 
samples are shifted through a delay line. The length of the 
delay line is equal to the length of the signal to be detected, 
assuming the signal length is known and constant. The ob-
tained input vector is fed into the nonlinear filter, which gen-
erates the test statistic to be thresholded for signal detection. 
The filter contains a weight vector v that needs to be opti-
mized to maximize the MI criterion [5,6,7]. 

The conditional class entropies and the overall data en-
tropy have to be estimated in order to approximate MI. In our 
system, a KDE-based plug-in estimator [8,9,10] is used for 
this purpose. Given a set of independent and identically dis-
tributed (iid) samples {y1,…yN}, which can be partitioned 
into subsets corresponding to each class as { , 

the entropies in (1) can be estimated by [9]: 
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3. NONLINEAR ADAPTIVE FILTERING 

 Given the received signal rk, the time-delay vector sam-
ples {x1,x2,…,xN} are constructed from the shifted samples 
of  rk. Each vector is also associated with a class label (0 or 
1) yielding {c1,c2,…,cN}. We are interested in finding a 
nonlinear transformation y=g(x) such that the Shannon MI 
between the projection and the class label is maximized. 
 According to the theory of reproducing kernels for Hil-
bert spaces (RKHS), the eigenfunctions ),...}(),( 21 xx{ ϕϕ  
collected in vector notation as )(xφ  of a kernel function K 
that satisfy the Mercer conditions [11] form a basis for the 
Hilbert space of finite-power nonlinear functions [12,13].1 
Therefore, every finite-L2-norm nonlinear transformation 
g(x) can be expressed as a linear combination of these bases: 
 )()( xφvx Tgy ==  (5) 

c j
As we will show next, such linear combinations of nonlinear 
basis functions arise naturally from the KDE-based non-
parametric estimates of mutual information in the context of 
feature subspace projections. 
 Consider the Shannon mutual information between the 
high-dimensional filter input vector and the class label. 
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 The pdfs px|c and px  in (6) are estimated using KDE  
with K(.) as the kernel. The conditional expectation can be 
approximated by a sample mean over the appropriate sam-
ples. This leads to 

                                                           
1 The bar denotes the true eigenfunctions/values of the kernel. 
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Assuming that K is a Mercer kernel (with some abuse of no-
tation) we can write )()()( xφΛxφxx ′=′− TK . Conse-
quently, the mutual information estimate becomes 
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Figure 1. Detecting signal in noise using mutual information.
where we define the membership vector mc for each class c, 
such that mci=1 if ci=c, 0 otherwise, and the vectors ei whose 
ith entry is 1 and all others are zeros, as well as a vector of 
ones, denoted by 1. In addition, we introduced the matrix 

)]()([ 1 NxφxφΦx L= , where N=N0+N1. Defining the 
average vectors of the transformed features for each class 
and for the whole training set as ccc N mΦµ x)/1(=  (for 
the feature vectors from class c) and 1Φµ x)/1( N=  (for the 
whole data set), we equivalently obtain: 
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 Note that so far we have only utilized the true eigenfunc-
tions and the eigenvectors of the kernel function. According 
to our projection model in (5), the projection is accomplished 
in the kernel-induced ϕ-space, and the best L2-orthogonal 
approximation for )(xφ  is given by 

 )()( xφvvyφ T=  (10) 
This leads to the following cost function that needs to be 
maximized by optimizing the weight vector v: 
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In practice, analytical expressions for the (infinitely many) 
eigenfunctions of the kernel function are not available. How-
ever, suitable approximates can be obtained using the avail-
able training samples. Spectral methods provide the neces-
sary tools to achieve this. Following the common procedure 
in spectral methods, using all training samples in pairs as 

)( jiij K xxK −= , we define the affinity matrix. The matrix 
K can be decomposed into its eigenvalues and eigenvectors 
as , which are essentially approximations of 
the sought eigenfunctions and eigenvalues of the kernel func-
tion. Specifically, according to the Nystrom routine [14], the 
eigenfunctions can be approximated using the eigendecom-
position of the affinity matrix K as follows: 

xx ΛΦΦK T=

 )()( 1 xkΦΛxφ x
−= N  (12) 

where k(x)=[K(x-x1),…, K(x-xN)]T.  
 With this substitution, the nonlinear feature transforma-
tions become )x . Using this nonparametric 
approximation, the estimate for the criterion in (11) become

(φvy T=
s 
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where µ  and µ  are the 
class and overall mean vectors of the data in the ϕ-space. It is 
important to note that the class priors p

ccc N mΦx)/1(= 1Φx)/1( N=

c are estimated from 
the training data by Nc/N. Imposing the constraint vTv=1, we 
need to maximize (13). A very important observation is that 
these mean vectors are orthogonal to each other with their 
individual norms equal to pc

-1/2, pc being the class prior prob-
ability. This is due to the fact that the data transformations 
are calculated using (12) for both training and testing data. 
To see this consider the following: 
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Now the inner product between two mean vectors is: 
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 Thus, the mean vectors of each class in the ϕ-space cre-
ate an orthogonal (but not normal) basis for the space in 
which our optimization variable v lies in. Defining a basis 
matrix , which satisfies M][ 10 µµM = TM=P-1, where 
P=diag(p1,…,pC), we can express v as  
  (16) αMPv 2/1=
where αTα=1. Using (16), and the identities µ  and 

, where p is the vector of class priors and e

Mp=

ccc
T p eµM 1−= c 

is the canonical unit vector in direction c as defined earlier, 
the maximization problem in (13) can be converted to a prob-
lem in terms α subject to αTα=1 as: 
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 Notice that, due to the constraint αTα=1, we can express 
all feasible solutions of α in terms of rotations of a unit norm 
vector. For convenience, consider rotations of the form 
α=Rq, where q is a vector consisting of entries qc=pc

1/2. With 
some more manipulations, the solution to the constrained   
optimisation problem in (17) is found to be α=[-p1

1/2,p0
1/2]T. 

An extension of the formulation presented here to more than 
two classes is possible and will be treated in a future publica-
tion. In the signal detection scenario (or any other hypothesis 
testing problem), however, the number of classes is always 
two. 
 A crucial issue in the success of the proposed nonlinear 
detection filter is the suitable selection of the kernel function. 
A practical consideration in selecting the kernel function in 
all spectral methods is the selection of the functional form of 
the kernel as well as the width of the kernel. Typically, this 
problem is tackled by trying to optimize the parameters for a 
family of kernels of some specific type. The connection to 
density estimation, presented in (7), clearly indicates that the 
kernel function should be selected to match the distribution 
1
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Figure 2. Performance comparison for signal detection in
AWGN with nonlinear amplitude distortion. 
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Figure 3. Performance comparison for signal detection in
AWGN with temporal distortion. 
of the data as much as possible. For simplicity, in the follow-
ing experiments, a circular Gaussian kernel is assumed and 
its width parameter (variance) is determined utilizing the rule 
of thumb by Silverman that gives the optimal kernel size for 
the data set assuming that a Gaussian distribution underlies 
[15]: 
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where n is the dimensionality of the data x, N is the number 
of samples, and Σx is the sample covariance of the training 
set. 
 

4. EXPERIMENTAL RESULTS 
 The matched filter is known to be optimal under AGN 
and linear channel assumptions, in which case the proposed 
nonlinear matched filter has identical receiver characteristics 
with the matched filter. Additionally, the matched filter struc-
ture, by definition, assumes that the signal structure is 



known. However, the matched filter becomes sub-optimal for 
the cases where these assumptions are not valid or there is a 
perturbation in the received signal from the predetermined 
one. We demonstrate the performance gain obtained by using 
the proposed nonlinear matched filter in the following two 
examples. 
 Nonlinear Channel Distortion: The matched filter per-
formance declines drastically if the channel introduces 
nonlinear distortions to the transmitted signal. The detection 
and false alarm performance of the nonlinear filter is much 
better as compared to the conventional linear method as 
shown in Fig. 2. In consistency with the literature on digital 
communications, the channel nonlinearity in this example is 
taken to be third order polynomial [16]. The received signal 
is simply rk=h(sk)+nk, where h is the nonlinear distortion and 
n is AWGN. 
 Temporal Deviation from the Original Signal: In some 
biomedical signal detection problems (such has heart-beats 
and neuronal spiking activity), the target waveform does not 
always follow the same temporal shape exactly. In such 
situations, correlating the received signal with a standard 
template will result in reduced detection performance. To 
illustrate the performance of the nonlinear matched filter in 
such situations, here we utilize a sinusoid with unknown fre-
quency. The matched filter uses a sinusoid with a slightly 
perturbed frequency as the template in order to simulate the 
rough approximation effect of the template to the target sig-
nal.   The results shown on Fig. 3 clearly demonstrate the 
superior performance of the nonlinear filter. 
 Upon observing the performance of the nonlinear filter 
in both experiments, we can also conclude that the perform-
ance of this filter does not require the knowledge of the true 
signal waveform. The filter can easily be modified to ac-
commodate for multiple target signal scenarios by allocating 
a separate class for each target. 
 

5. CONCLUSIONS 
 In this paper we proposed a nonlinear matched filter 
based on mutual information. Although the conventional 
linear matched filter has optimal performance under linearity 
and Gaussianity conditions, it loses its optimality in the ab-
sence of these requirements. The experimental results 
showed that the proposed filter is superior to the linear 
matched filter in the presence of nonlinear distortions, which 
is an expected consequence of using mutual information as 
opposed to linear and second-order statistical measures. 
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