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AbstractDetermining the optimal subspace projections, 
which maintains the best representation of the original 
data, is an important problem in machine learning and 
pattern recognition. In this paper, we propose a 
nonparametric nonlinear subspace projection technique 
that employs kernel density estimation based information 
theoretic methods and kernel machines, in order to 
maintain class separability maximally under the Shannon 
mutual information criterion. 
 

I. INTRODUCTION 
 Dimensionality reduction is an important step in a 
variety of applications including pattern recognition, data 
compression, and exploratory data analysis. This results from 
the fact that the relevant information of the data can be 
represented in lower dimensions, which not only reduces the 
computational complexity but also provides a generalization 
of the data, leading to a robust solution. 
 Projection can be achieved either by a feature 
transformation or a feature selection. Optimal feature 
selection coupled with a specific classifier topology, namely 
the wrapper approach, results in a combinatorial 
computational requirement, thus, is unsuitable for adaptive 
learning of feature projections. Besides, since feature 
selection is a special case of feature transformations, we are 
mainly interested in feature transformations. 
 Adaptive learning of nonlinear feature transformations, 
namely the filter approach, is achieved by optimizing a 
suitable criterion. The possibility of learning the optimal 
feature projections sequentially, decreases the computational 
requirements making the filter approach especially attractive. 
 Principle components analysis (PCA) is historically the 
first dimensionality reduction technique [1]. PCA and its 
nonlinear extension to nonlinear projections, Kernel PCA 
[2,3], exhibit the same shortcoming, namely, the projected 
features are not necessarily useful for classification.  
 Linear Discriminant Analysis (LDA) attempts to tackle 
this shortcoming of PCA by searching for linear projections 
that maximizes class separability under Gaussianity 
assumption. LDA projections are optimized based on the 
means and covariance matrices of classes, which are not 
descriptive for an arbitrary probability density function. Its 
nonlinear extension Kernel LDA [4], generalizes this 
assumption by first projecting the data to a hypothetical high 
dimensional space where the Gaussianity condition is 
assumed to be satisfied. However, the kernel functions used 
in practice do not necessarily validate this assumption. 
 Second-order statistical measures have found widespread 
application in many areas of machine learning and pattern 

recognition. However, the insufficiency of only second-order 
statistics in many application areas have been discovered and 
more advanced concepts including higher-order statistics, 
especially those stemming from information theory are now 
being studied and applied in many contexts, and proven to be 
superior to the traditional second-order measures. In the filter 
approach, it is important to optimize a criterion that is 
relevant to Bayes risk, which is typically measured by the 
probability of error. A suitable criterion is mutual information 
(MI) between the projected features and the class labels, 
which is motivated by lower and upper bounds in information 
theory that relate this MI to probability of error. In principle, 
MI measures nonlinear dependencies between a set of 
random variables taking the higher order statistical structures 
existing in the data into account, as opposed to linear and 
second-order statistical measures such as correlation and 
covariance [7]. 
  Mutual information can be estimated nonparametrically 
from the training samples [8]. Since the class label vector is 
discrete-valued, the problem reduces to just estimating 
entropies of continuous random vectors. The multi-
dimensional entropy can be estimated nonparametrically 
using a number of techniques. However, techniques based on 
sample spacing are not differentiable, hence not suitable for 
adaptive learning of feature projections [9]. On the other 
hand, entropy estimators based on kernel density estimation 
(KDE) provide a differentiable alternative [8,10].  
 In this paper, we propose a method for determining 
optimal nonlinear feature projections that maximize the 
Shannon mutual information between the projections and the 
class labels. Nonparametric entropy estimation using KDE 
results in O(N2) complexity, where N is the number of 
training samples. Therefore, gradient-based methods are 
computationally prohibitive for large training sets. We 
propose to avoid this complication by exploiting the kernel 
induced feature (KIF) transformation to obtain an algorithm 
that has O(N) complexity. Further computational savings are 
achieved by employing the deflation procedure in the KIF 
space to determine each projection sequentially rather than 
simultaneously. 
 

II. THEORETICAL BACKGROUND 
 The aim of the feature subspace projections is to 
establish a generalization of the data in order to improve the 
classifier robustness as well as reducing the computational 
complexity of the classifiers. On the other hand, the classifier 
performance must not be compromised during the projections 
by losing information about the data by throwing away some 
useful components. Theoretically, the optimal subspace 



projections should minimize the Bayesian risk, and since it is 
a widely used and accepted risk function, we will use the 
probability of error as Bayesian risk function. 
 The average probability of error has been shown to be 
related to MI between the feature vectors and the class labels. 
Specifically, Fano’s and Hellman & Raviv’s bounds 
demonstrate that probability of error is bounded from below 
and above by quantities that depend on the Shannon MI 
between these variables [11,12]. Maximizing this MI reduces 
both bounds, therefore, forces the probability of error to 
decrease, leading to an improved classifier performance [6].  
 In feature extraction, we are interested in the MI between 
the continuous-valued feature vector y and the discrete-
valued class labels c. We formulate the problem using 
Renyi’s generalized definition of MI between y and c with 
respect to α is defined in terms of the overall data and the 
individual class distributions as [7] 
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where  pc are the prior class probabilities, The overall data 
distribution in terms of class conditional distributions p(y|c) 
is given as, 
  (2) ∑= c c cppp )|()( yy − cα

As seen in (1), in order to estimate MI we need to 
estimate the conditional class probability distributions as well 
as the overall data distribution. Density estimators based on 
sample spacing are not suitable for gradient-based adaptation, 
and a feasible alternative is the KDE-based plug-in estimator 
[8]. Clearly, optimizing a nonlinear topology to maximize (1) 
using the KDE-based estimators will be computationally 
expensive as N increases. In the next section we propose a 
nonparametric nonlinear topology that stems from the theory 
of reproducing kernels in Hilbert spaces. 
 Under the framework of optimal feature subspace 
projections that maximize mutual information with class 
labels, the adaptive learning procedure to find these optimal 
projections follows the block diagram shown in Fig. 1. A 
high dimensional feature vector is projected to a lower 
dimensional vector by a nonlinear topology (such as a neural 
network), whose weights (denoted by v) are optimized to 
maximize the MI criterion [5,6]. 
 

III. SPECTRAL TRANSFORMATIONS AND MAXIMALLY 
SEPARABLE PROJECTIONS 

 We are given a set of features {x1,x2,…,xN} and their 
corresponding class labels {c1,c2,…,cN}, where the number of 
samples in each class is denoted by Nc and the total number 
of classes is C. We are interested in finding a nonlinear 
subspace projection such that the MI between the projection 
and the class labels, namely IS(y,c), is maximized. 
 According to the theory of reproducing kernels for 
Hilbert spaces (RKHS), the eigenfunctions ),...}(),( 21 xx{ ϕϕ  
collected in vector notation as )(xφ , of a kernel function K 
that satisfy the Mercer conditions [13] form a basis for the 
Hilbert space of finite power nonlinear functions [14].1 
Therefore, every finite-L2-norm nonlinear transformation 
gd(x) can be expressed as a linear combination of these bases: 
 )()( xφvx T

ddd gy ==  (3) 
where yd is the dth component of the projection vector y. As 
we will show next, such linear combinations of nonlinear 
basis functions arise naturally from the KDE-based 
nonparametric estimates of mutual information in the context 
of feature subspace projections. 
 
A. Estimating the MI Nonparametrically Using KDE 
 Consider the Renyi’s MI between the high-dimensional 
original feature vectors and the class labels. 
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Estimating the pdf’s using a KDE estimator with kernel K(.) 
and approximating the conditional expectation by a sample 
mean we obtain 
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Assuming that K is a Mercer kernel we can write, 
)()()( xφΛxφxx ′=′− TK . Hence, the MI estimate becomes 
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where we define the membership vector mc for each class c, 
such that mci=1 if ci=c, 0 otherwise, as well as a vector of 
ones, denoted by 1. Besides, we introduced the matrix 

)]()([ 1 NxφxφΦx L= , where N=N1+…+NC. Defining the 
mean vectors in the transformed domain as 

ccc N mΦµ x)/1(=  and 1Φµ x)/1( N= for class c and 
whole data set respectively, we obtain 
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1 The bar denotes true eigenfunctions and eigenvalues of the kernel. 
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Figure 1. Determining optimal feature subspace projections using
mutual information. 



As also seen from (7), we can obtain different cost functions 
for different values of α. The robustness and the performance 
of the projection results strictly depend on the choice of α. As 
an example, one can easily see that for increasing values of α 
the MI estimator is becoming to be less dependent to the 
outliers in the data. For the limiting case as α approaches to 
1, Renyi’s MI converges to Shannon’s MI definition, which 
is widely used and merits special attention. At this point, we 
will use the Shannon’s MI by taking the limit as α→1, 
leaving the dependency on α to be studied later. 
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Note that so far we have only utilized the true eigenfunctions 
and the eigenvectors of the kernel function. 
 
B. Spectral Transformations that Maximize Shannon Mutual 
Information in the Kernel-Induced Feature Space 
 According to our projection model in (3), effectively, the 
projection is accomplished in the kernel-induced ϕ-space. If 
the target reduced dimensionality is D, we have 

)(xφVy T= , where V=[v1…vD] consists of orthonormal 
columns vd. Therefore, the best L2-orthogonal approximation 
for )(xφ  is 

 )()( xφVVyφ T=  (8) 
This leads to the following cost function that needs to be 
maximized by optimizing V: 
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 Analytical expressions for the eigenfunctions of the 
kernel )(xφ

( iK x −

xx ΛΦ
T

 are not available. However, spectral methods 
provide necessary tools to approximate these from the 
training samples. Following the common procedure in 
spectral methods, using all training samples in pairs as 

, we define the symmetric kernel matrix K 
(also called the affinity matrix). The matrix K can be 
decomposed into its eigenvalues and eigenvectors as 

, which are essentially approximations of the 
sought eigenfunctions and eigenvalues of the kernel function. 
Hence the eigenfunctions can be approximated using the 
eigendecomposition of the affinity matrix K as follows: 

)jij xK =

ΦK =

 )()( 1 xkΦΛxφ x
−= N  (10) j

where k(x)=[K(x-x1),…, K(x-xN)]T. Substituting this, the 
transformations become and (9) becomes, )(xφVy T=
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where  and  are the class 
and overall mean vectors of the data in the ϕ-space. It is 

important to note that the class priors pc are estimated from 
the training data by Nc/N and µ=p1µ1+…+ pCµC. 

ccc N mΦµ x)/1(= 1Φµ x)/1( N=

 A critical issue affecting the performance of the subspace 
projections is the suitable selection of the kernel function. A 
practical consideration in selecting the kernel function is the 
selection of the functional form of the kernel as well as the 
width of the kernel. Typically, this problem is tackled by 
trying to optimize the parameters for a family of kernels of 
some specific type. The connection to kernel density 
estimation, presented in (5), clearly indicates that the kernel 
function should be selected to match the distribution of the 
data as much as possible. For simplicity, in the following 
experiments, a circular Gaussian kernel is assumed and its 
width parameter (variance) is determined utilizing the rule of 
thumb by Silverman that gives the optimal kernel size for the 
data set assuming that a Gaussian distribution underlies [16]: 
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where n is the dimensionality of the data x, N is the number 
of samples, and Σx is the sample covariance of the training 
set. Clearly, certain obvious improvements include utilizing a 
different kernel, however, such modifications will be studied 
in future publications, since the goal of this paper is to 
demonstrate the concept, rather than optimizing every little 
implementation detail. 
 
C. Projections to a Single Dimension 
 For illustration, first we focus on finding a one-
dimensional nonlinear projection that maximizes MI with the 
class labels. For multi-dimensional projections the deflation 
procedure can be employed after optimizing each projection 
vector, yielding the optimal projection directions 
sequentially, which results in lower computational load as 
compared to searching for all the projections simultaneously.  
 Imposing the constraint vTv=1, we need to maximize 
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 A very important observation is that these mean vectors 
are orthogonal to each other with their individual norms equal 
to pc

-1/2, pc being the class prior probability. This is due to the 
fact that the data transformations are calculated using (10) for 
both training and testing data. This leads to the following: 
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Now consider the inner product between two mean vectors: 

 




≠
=

==
dcif
dcifNN

NN
N c

d
T
c

dc
d

T
c 0

/
mmµµ  (15) 

 Thus, the mean vectors of each class in the ϕ-space 
create an orthogonal (but not normal) basis for the space in 
which our optimization variable v lies in. Defining a basis 
matrix ]...[ 1 CµµM =  which satisfies MTM=P-1, where is 
P=diag(p1,…,pC) we can express v as 



  (16) αMPv 2/1=
where αTα=1. Using (16), and the identities Mpµ =  and 

, where p is the vector of class priors and ec is 
the canonical unit vector in direction, the maximization 
problem in (13) can be converted to a problem in terms α 
subject to αTα=1 as: 

ccc
T p eµM 1−=
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 Notice that, due to the constraint αTα=1, we can express 
all feasible solutions of α in terms of rotations of a unit norm 
vector. For convenience, consider rotations of the form 
α=Rq, where q is a vector consisting of entries qc=pc

1/2. With 
this substitution, we can rewrite (17) as shown in (18), where 
DKL denotes the Kullback-Leibler divergence measure. 
Clearly, the first term is an inconsequential constant in the 
optimization problem, and a rotation matrix that achieves 
qTRq=0 maximizes the criterion. Note that this is equivalent 
to selecting Rq orthogonal to q. Since the coordinates of the 
mean vector µ in terms of the bases given by the normalized 
class means µcpc

1/2 is also pc
1/2=qc, this solution coincides 

with the observation that the optimal projection should be 
orthogonal to the overall data mean vector in the ϕ-space. 

 














+−=

−= ∑∑
==

Rqq

qR
qp

Rqq

qR
R

p

R

T
c

KL

C

c
cc

C

c T
cc

c

ED

pp
q

pJ

:

11

:

log)||(

loglog)(max

 (18) 

 In general, rotation matrices corresponding to orthogonal 
transformations of the vector consist of 0’s and ±1’s (the 
cosine and sine of ±π/2). Therefore, the projections of a data 
to one dimension under this methodology can be completely 
determined by the entries of q, i.e., {p1

1/2,…,pC
1/2}, by 

shuffling them and modifying their signs as necessary (and 
perhaps replacing some with as determined by the appropriate 
rotation matrix). For example, in the case of 2 classes (C=2), 
the two solutions are α=[-p2

1/2,p1
1/2]T and its negative, which 

is an equivalent solution. In the case of C=3, the three distinct 
solutions are given by α=[-p2

1/2,p1
1/2,0]T, α=[-p3

1/2,0, p1
1/2]T, 

α=[0,-p3
1/2,p2

1/2]T. These solutions differ in their ordering of 
the projected classes on the projection axis and in general, the 
solution that also maximizes the numerator of the first term in 
(17) is preferable. The reason for this will become apparent in 
the next section.  
 Similar analytical expressions could be derived for 
candidate projections in the case of more than 3 classes, but 

the general iterative procedure proposed in the next section 
already considers these issues and constructs the solution 
without having to go through all possible rotations that result 
in orthogonal vectors in the C dimensional space. 
Nevertheless, for cases with few classes, these analytical 
solutions are very practical, since it only takes evaluating a 
portion of (17) for all candidate solutions and selecting the 
one that yields the maximum value. The function to be 
evaluated is specifically 

 ∑
=

C

ccc pp
1

2/1logα  (19) 

 
D. Algorithm for Determining Optimal Projections to C or 
Fewer Dimensions 
 In this section, we generalize the intuition developed in 
the previous section about determining the optimal 
projections by finding orthogonal directions to the mean 
vector µ. To this end, a procedure based on Gram-Schmidt 
orthogonalization will be employed. Note that the deflation 
will be implemented through the class mean vectors µc, 
therefore, the complexity of this algorithm is relatively low. 
 We start by constructing the matrix M ]...[ 1 Cµµ= , 
where the mean vector norms satisfy (15). Consequently, all 
columns lie in one half of the vector space. This matrix is 
renamed as MC to denote that its column rank is C. We 
introduce the sign vector sC=[1,…,1]T (for reasons that will 
become clear shortly). Using the elementwise multiplication 
operator •, we calculate rC=sC•p. The overall mean vector µC 
is then given by µC=MCrC. The optimal projection of the data 
to C-1 dimensions is determined by the C-1 dimensional 
subspace orthogonal to µC; therefore, MC is deflated as: 
 ( ) CCCTC

N
C MµµµIM 21 ||||/−=−  (20) 

 Any orthonormal bases that span the same space as the 
columns of the deflated matrix MC-1 is a valid candidate for 
the projection matrix V with C-1 orthonormal columns. 
Possible methods to obtain these bases is to employ Gram-
Schmidt orthonormalization to the columns of MC-1 and 
determining the eigenvectors of MC-1MC-1,T that correspond to 
the C-1 nonzero eigenvalues (which could be achieved 
sequentially). In the latter case, for example, the determined 
eigenvectors can be immediately assigned as V. 
 The procedure continues similarly for reducing 
dimensionality further: Construct sC-1, Calculate the mean 
vector in the deflated space using µC-1=MC-1rC-1, deflate the 
class means matrix using 
 ( ) 121,112 ||||/ −−−−− −= CCTCC

N
C MµµµIM  (21) 

As before, the orthonormal projection matrix V to C-2 
dimensions is determined by finding the nonzero 
eigenvectors of MC-2MC-2,T. The procedure is carried out in 
this manner until deflation down to the desired number of 
dimensions is achieved. 
 Once the column-orthonormal projection matrix V, 
which is N×D, is obtained previously unseen test samples can 
be transformed using 



 )()( 1 xkΦΛVyφ x
−= TN  (22) 

 Note that the procedure described here requires 
determining the larger eigenvectors of an N×N symmetric 
matrix at every step of the deflation process. Unless certain 
simplifications are introduced, this process can potentially 
become O(N3). It is possible to avoid this level of complexity 
by determining the required eigenvectors sequentially using a 
suitable algorithm. Nevertheless, such algorithms still require 
O(N2) calculations per eigenvector per iteration. Due to the 
iterative nature, the overall complexity might easily exceed 
analytical methods, such as those based on factorization 
techniques [17]. Alternatively, the eigendecomposition of the 
kernel matrix could be performed on smaller data matrices 
using representative subsets and the Lanczos method or the 
Nystrom routine could be employed [15,17]. In fact, in 
practice, such an approach using a balanced number of 
samples from each class to determine the eigenfunctions 
could become preferable, as the prior class probabilities 
become more unbalanced, the eigenfunction estimates will 
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Outline of the algorithm: 
- Given a set of training data {x1,x2,…,xN} and their corresponding 

class labels {c1,c2,…,cN}, determine the kernel size (for Gaussian 
kernels according to Silverman’s rule of thumb): 

( ) )4/(22 ))12/((4)(1 ++= nNntr
n xΣσ  

- Construct the kernel matrix K, where )( jiij K xxK −= . 

- Decompose K into its eigenvectors and eigenvalues such that 

. xx ΛΦΦK T=
- For the training data, calculate the kernel induced feature 

transformations as follows: )()( 1
jj N xkΦΛx x

−=φ  

- Determine the class means and the overall mean using 
ccc N mΦµ x)/1(=  and µ . 1Φx)/1( N=

- Perform the following deflation procedure until the desired
projection dimensionality is reached: 

1. Set sC-d=[1,…,1]T in the first step, s′jC-d=sign(µj
TuC-d). in 

the following steps. 
2. Calculate rC-d=sC-d•p and determine the new overall mean 

vector µC-d by µC-d=MC-drC-d. (The symbol • denotes 
elementwise vector product.) 

3. Construct the matrix . If  ]...[ 1
dC

C
dCdC −−− = µµM

C-d is the desired projection dimension, determine the 
eigenvectors of MC-dMC-d,T that correspond to the C-d
nonzero eigenvalues. Assign these eigenvectors to V. 

4. Otherwise, perform the following deflation operation and 
go back to the first step: 
( ) CCCTC
N

C MµµµIM 21 ||||/−=−  

ecome more biased towards emphasizing the stronger 
lasses, thus yielding high-variance projection solutions. 
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fication errors made using a threshold on the projections values.
IV. EXPERIMENTS 
In order to illustrate how the proposed nonparametric 

onlinear projection scheme works, simulations using two 
atasets will be presented. The chain dataset is selected to 
emonstrate the effectiveness of the nonlinear projections 
btained through this methodology in determining 
onparametric projections to separate classes with nonlinear 
iscriminant boundaries, and the matched filter example is 
hosen to motivate the use of these techniques as nonlinear 
ilters. 

Chain Dataset: Chain dataset consists of two interlocked 
nd circular shaped classes with 300 three-dimensional 
amples for each class, uniformly distributed around the 
ircle and perturbed around the circle with Gaussian 
istributed random values. This dataset is generated such that 
here is a nonlinear decision boundary between the classes, in 
rder to eliminate the possibility of having a linear projection 
irection on which the classes become easily separable; 
ence, nonlinear projections are required here. 



 Sample simulation results using the chain dataset are 
presented in Fig. 2. The original data set is shown in Fig. 2a, 
and the values of the one-dimensional projection are 
presented in Fig. 2b. The errors based on the optimal 
threshold are indicated by diamonds. 
 Nonlinear matched filter: Interpreting the matched filter 
problem as a two-class clustering problem, we can use the 
given algorithm in order to use a projection to one dimension 
and distinguish between two possible cases, namely r=n or 
r=s+n, where r is the received signal, n is the channel noise, 
and s is the signal to be detected. Since the linear matched 
filter is optimal under quite restrictive conditions such as 
linearity and Gaussianity, the nonlinear matched filter is 
strongly superior to the linear matched filter in the absence of 
these restrictions. In order to simulate the case that the 
optimal threshold is unknown, ROC curves can be used in 
order to evaluate the system performance. Under the 
assumption that the signal suffers a nonlinear distortion in the 
channel, ROC curves for the nonlinear matched filter are 
depicted in Fig. 4 along with the traditional linear matched 
filter for a comparison. In consistency with the literature on 
digital communications, the channel nonlinearity in this 
example is taken to be a third order polynomial [18]. As 
expected, an increase in the overlap, hence a decrease in 
SNR, results in worse ROC curves. Given the ROC, the 
optimal threshold for a given data set can be easily 
determined using a line passing from (0,1), and whose slope 
is determined by the ratio of a priori class probabilities. 
 

V. CONCLUSIONS 
 In this paper, we have proposed a nonparametric 
nonlinear subspace projection methodology based on 
maximizing the Shannon mutual information between the 
projections and the class labels. Interpreting the 
nonparametric kernel estimator for mutual information as a 
nonparametric kernel-machine, we are able to determine 
nonlinear projections that maintain class separability 
nonparametrically. The proposed method lays out an 
interesting framework under which nonparametric kernel-
density estimates of information theoretic optimality criteria 
can be linked to nonparametric nonlinear kernel-machines. 
 The most important feature of the proposed approach is 
that the kernel calculations are done only once for the training 
data in order to determine the optimal nonlinear projection, in 
contrast with the traditional parametric projection algorithms 
based on optimizing the same nonparametric MI estimate that 
have to rely on gradient updates of the weights, which 
requires the O(N2) kernel matrix calculations at every 
iteration of the gradient algorithm. 
 

REFERENCES 
[1] E. Oja, Subspace Methods of Pattern Recognition, Wiley, New York, 

1983. 
[2] B. Scholkopf, A. Smola, K.R. Muller, “Nonlinear Component Analysis 

as a Kernel Eigenvalue Problem,” Neural Computation, vol. 10, pp. 
1299-1319, 1998. 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

 
 

Figur
nonli
and p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Amplitude Distortion

Pfa

P
d

Linear matched filter
Nonlinear matched filter

SNR=10dB

SNR=5dB

 
e 3. Performance comparison for signal detection in AWGN with
near amplitude distortion. pd and pfa stand for probability of detection
robability of false alarm respectively.  
K. Fukunaga, Introduction to Statistical Pattern Recognition, 
Academic Press, New York, 1990. 
G. Baudat, F. Anouar, “Generalized Discriminant Analysis Using a 
Kernel Approach,” Neural Computation, vol. 12, pp. 2385-2404, 2000. 
J.C. Principe, J.W. Fisher, D. Xu, “Information Theoretic Learning,” in 
Unsupervised Adaptive Filtering, S. Haykin Editor, John Wiley & 
Sons, New York, 2000, pp.265-319. 
K. Torkkola, “Feature Extraction by Non-Parametric Mutual 
Information Maximization,” Journal of Machine Learning Research, 
vol. 3, pp. 1415-1438, 2003. 
T. Cover, J. Thomas, Elements of Information Theory, Wiley, New 
York, 1991. 
D. Erdogmus, Information Theoretic Learning: Renyi’s Entropy and its 
Applications to Adaptive System Training, PhD Dissertation, University 
of Florida, Gainesville, Florida, 2002. 
E.G. Learned-Miller, J.W. Fisher III, “ICA Using Spacings Estimates 
of Entropy,” Journal of Machine Learning Research, vol. 4, pp. 1271-
1295, 2003. 
D. Erdogmus, J.C. Principe, “An Error-Entropy Minimization 
Algorithm for Supervised Training of Nonlinear Adaptive Systems,” 
IEEE Transactions on Signal Processing, vol. 50, no. 7, pp. 1780-1786, 
2002. 
R.M. Fano, Transmission of Information: A Statistical Theory of 
Communications, MIT Press, New York, 1961. 
M.E. Hellman, J. Raviv, “Probability of Error, Equivocation and the 
Chernoff Bound,” IEEE Transactions on Information Theory, vol. 16, 
pp. 368-372, 1970. 
J. Mercer, “Functions of Positive and Negative Type, and Their 
Connection with the Theory of Integral Equations,” Transactions of the 
London Philosophical Society A, vol. 209, pp. 415-446, 1909. 
H. Weinert (ed.), Reproducing Kernel Hilbert Spaces: Applications in 
Statistical Signal Processing, Hutchinson Ross Pub. Co., Stroudsburg, 
Pennsylvania, 1982. 
C. Fowlkes, S. Belongie, F. Chung, J. Malik, Spectral Grouping Using 
the Nystrom Method,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 23, pp. 298-305, 2004. 
B.W. Silverman, Density Estimation for Statistics and Data Analysis, 
Chapman and Hall, London, 1986. 
G.H. Golub, C.F. van Loan, Matrix Computations, 3rd ed., Johns 
Hopkins University Press, Baltimore, Maryland, 1996. 
X.N. Fernando, A.B. Sesay, “Nonlinear Channel Estimation Using 
Correlation Properties of PN Sequences,” Proc. IEEE Canadian 
Conference on Electrical and Computer Engineering, pp. 469-474, 
2001. 


	C.Projections to a Single Dimension
	Chain Dataset: Chain dataset consists of two interlocked and circular shaped classes with 300 three-dimensional samples for each class, uniformly distributed around the circle and perturbed around the circle with Gaussian distributed random values. This
	REFERENCES

