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ABSTRACT

We develop a novel classifier in a kernel feature space de-
fined by the eigenspectrum of the Laplacian data matrix.
The classification cost function is derived from a distance
measure between probability densities. The Laplacian data
matrix is obtained based on a training set, while test data is
mapped to the kernel space using the Nyström routine. In
that space, the test data is classified based on the angle be-
tween the test point and the training data class means. We
illustrate the performance of the new classifier on synthetic
and real data.

1. INTRODUCTION

Spectral methods for multivariate data analysis are emerg-
ing as powerful tools, mostly based on their practical suc-
cesses, for example in clustering [1]. Spectral methods are
typically based on a kernel matrix of pairwise relationships
between the samples, from which a more useful data repre-
sentation can be derived by utilizing its eigenvalue decom-
position, or eigenspectrum. Until recently, only those points
used to calculate the kernel matrix have been possible to
represent in the kernel feature space. Therefore, spectral
classifiers have been slow to emerge since these have to be
able to represent successively new data points in the kernel
feature space. Recently, it was shown how the map new data
points into the feature space by using the Nyström routine
[2].

In this paper, we propose a new spectral classifier based
on the Laplacian pdf distance, which is introduced as a clus-
tering cost function in a recent paper by the current authors
[3]. The Laplacian pdf distance exhibits a connection to
Mercer kernel based learning theory via the Parzen window
technique for density estimation. In a kernel feature space
defined by the eigenspectrum of the Laplacian data matrix,
this distance measures the cosine of the angle between the
class mean vectors. Interestingly, in [3] it was shown that
when the prior probabilities of the classes are roughly equal,
minimizing the Laplacian pdf distance corresponds to min-
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imizing the probability of error. However, if the prior prob-
abilities are unequal, the Laplacian pdf distance will act as
a risk function, emphasizing to classify correctly the least
probable class.

Quite importantly, based on the Parzen method, an opti-
mal spectral data transformation can be obtained. We pro-
pose to learn the optimal Laplacian data matrix based on
a training data set. Hence, the transformation to the ker-
nel feature space is defined by the eigenspectrum of that
matrix. In the kernel space, we compute the means of the
transformed training data. A test data set, which is to be
classified, is mapped to the kernel space by means of the
Nyström routine. Based on the Laplacian pdf distance in
the kernel space, a spectral classifier is developed. The an-
gle between a test point and the class means is computed.
Thereafter, the test point is assigned to the class yielding
the smallest such angle.

For the convenience of the reader, we briefly review the
theory behind the Laplacian pdf distance in section 2. The
material presented here is a compressed version of [3]. In
section 3, we develop the novel Laplacian spectral classi-
fier. Thereafter, in section 4, we present some experimental
studies of the proposed method. Finally, in section 5, we
make our concluding remarks.

2. THE LAPLACIAN PDF DISTANCE

In this section, we briefly review the Laplacian pdf distance
measure. We only consider the two-class case, even though
multiclass generalizations can easily be made. For more
details on the mathematical derivations, we refer to [3].

2.1. Mercer kernel-based feature spaces

In Mercer kernel-based learning algorithms a nonlinear
mapping is potentially performed as

Φ : Rd → F
x → Φ(x) = [

√

λ1φ1(x),
√

λ2φ2(x), . . . ]T , (1)

where the λi’s and the φi’s are the eigenvalues and eigen-
functions of a Mercer kernel. Hence, the data x1, . . . ,xN ∈



Rd is mapped into Φ(x1), . . . ,Φ(xN ) ∈ F . The Mer-
cer kernel computes an inner product in the feature space,
that is, k(x,y) = 〈Φ(x),Φ(y)〉 [4]. In practice, the
mapping (1) is approximated based on the eigenspectrum
of the (N × N ) kernel matrix, K, with elements Kij =
k(xi,xj), i, j = 1, . . . , N , as

Φ(xi) ≈ [

√

λ̃1e1i, . . . ,

√

λ̃NeNi]
T . (2)

where λ̃j is the jth eigenvalue and eji denotes the ith ele-
ment of the jth eigenvector of the matrix K.

In [2] it was shown that an estimate of the eigenfunction
at a new point, y, can be obtained by he following interpo-
latory formula, denoted the Nyström routine

φj(y) ≈
√

N

λ̃j

N
∑

i=1

ejik(y,xi). (3)

2.2. The Laplacian PDF distance as a kernel feature
space cost function

Assume that a data set consists of two clusters. Associate
the probability density function p(x) with one of the clus-
ters, and the density q(x) with the other cluster. Let f(x)
be the overall probability density function of the data set. A
distance measure between the two pdfs can be expressed as

DL = − log
〈p, q〉1/f

√

〈p, p〉1/f 〈q, q〉1/f

≥ 0. (4)

where the f−1 weighted inner product between p(x) and
q(x) is defined as 〈p, q〉1/f ≡

∫

p(x)q(x)f−1(x)dx. By

defining the two functions h(x) = f−

1
2 (x)p(x) and g(x) =

f−

1
2 (x)q(x), the argument of the log in (4) can be ex-

pressed as

L =

∫

h(x)g(x)dx
√

∫

h2(x)dx
∫

g2(x)dx
. (5)

The distance between the two pdfs is greater the smaller
(5) is. Assume that we have available the iid training data
points {xi}, i = 1, . . . , N1, drawn from p(x), which is the
density of class C1, and the iid {xj}, j = 1, . . . , N2, drawn
from q(x), the density of C2. The union of these two classes
constitutes the overall data set. The relevant functions can
be estimated based on the Parzen window density estimation
technique as

ĥ(x) =
1

N1

N1
∑

i=1

f−

1
2 (xi)Wσ2

1
(x,xi),

ĝ(x) =
1

N2

N2
∑

j=1

f−

1
2 (xj)Wσ2

2
(x,xj), (6)

and f̂(x) = 1
N

∑N
k=1 Wσ2 (x,xk), where W is a Gaus-

sian kernel function whose width is determined by the σ2-
parameter in each case. By inserting these estimates into
(5), it was shown that it has an equivalent expression in a
kernel feature space as

L =

〈

m̂11/f
, m̂21/f

〉

||m̂11/f
||||m̂21/f

|| , (7)

where m̂i1/f
= 1

Ni

∑Ni

l=1 Φ1/f (xl), i = 1, 2, that is, the
sample mean of the ith class in feature space. The Gaussian
Parzen kernel is in fact the Mercer kernel in this case. This
cost function is quite interesting. It measures the distance
between the two classes in the feature space. In that space,
the distance is solely based on the means of the classes.
The distance is given by the cosine of the angle between
the class mean vectors.

The mapping Φ1/f was shown to be determined by the
eigenspectrum of the matrix K1/f . This matrix can be writ-

ten as K1/f = D−

1
2 KD−

1
2 . Here, K is the kernel ma-

trix with elements Kij = K(xi,xj) = W(σ2
t +σ2

s)(xi,xj),
where xi ∈ Ct,xj ∈ Cs, for t, s ∈ {1, 2}. Further-
more, D = diag(d1, . . . , dN ), where di = f̂(xi) =
1
N

∑N
j=1 Wσ2(xi,xj). In fact, K1/f is the Laplacian data

matrix.
A key point of this paper is that σ1, σ2 and σ, can be

determined automatically from the training set by optimal
Parzen kernel size selection. Thus, the matrix K1/f can
also be determined automatically, and so can the mapping
to the kernel feature space.

Many approaches have been proposed in order to opti-
mally determine the size of the Parzen window, given a fi-
nite sample data set. Silverman [5] discussed this problem,
using the mean integrated square error (MISE) between the
estimated an the actual pdf as the optimality metric, and
proposed the following formula

σopt = σX

{

4N−1(2d + 1)−1
}

1
d+4 , (8)

where d is the dimensionality of the data and σ2
X =

d−1
∑

i ΣXii , where ΣXii are the diagonal elements of the
sample covariance matrix.

3. A NOVEL SPECTRAL CLASSIFIER

In this section, we discuss a novel method for developing a
spectral classifier based on the Laplacian pdf distance. We
have available a labeled training data set. For each of the
classes, the optimal Parzen kernel size is determined by (8).
The optimal kernel size for the overall data set is also de-
termined by the same formula. Now, the optimal data trans-
formation into the kernel feature space can be performed
by (2), after having constructed K1/f . Note that the dimen-
sionality of the data in the kernel space equals the number of
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(a) Test data - labeled.
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(b) Bayes classification of test data.
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(c) Spectral classification of test data.

Fig. 1. Result of classifying a data set consisting of two Gaussian classes with very different prior probabilities.

training data patterns. In that space, the training class mean
vectors can be calculated, which can be used to determine
the distance between the classes. This is the training phase
of the classifier. For a test data set, which is to be classified,
one data point, y, at a time is mapped into the feature space
by (3). We use a Gaussian kernel also in (3), where the ker-
nel size, σ, is based on the overall training data set, since we
don’t know which class y belongs to. Thereafter, the angle
between y and each of the training class mean vectors is
computed. Finally, y is classified to the class for which that
angle is the smallest. In summary, the proposed classifier
has the following steps

1. Determine σ1, σ2 and σ.

2. Calculate K, D and K1/f = D−

1
2 KD−

1
2 .

3. Eigendecompose K1/f , and compute Φ(xi) ≈
[
√

λ̃1e1i, . . . ,
√

λ̃NeNi]
T , ∀i.

4. Find m1 and m2.

5. for i = 1 : number of test points

• Map yi the the kernel space by (3).

• Find the angle θ1 between yi and m1 and the an-
gle θ2 between yi and m2.

• Classify: yi ∈ C1 if θ1 < θ2, else yi ∈ C2.

4. EXPERIMENTAL RESULTS

Experiment 1. In the first classification experiment, we clas-
sify data points originating from two Gaussian distributions.
The purpose is to illustrate the risk function property of the
Laplacian spectral classifier.

Both distributions have the same spherical covariance
structure with unit variance. The mean vector of class one
in the input space is µ1 = [2 2]T . The mean vector of

the second class is µ2 = [0.6 0.6]T . The training data
is constructed such that class one is represented by 100
data points, compared to only 5 data points from class two.
Hence, P1 ≈ 0.95, while P2 ≈ 0.05. This means that
the two clusters have overlap and that their prior probabil-
ities are very different. Based on this training data set, the
new spectral classifier is trained. We also construct a tra-
ditional Bayes classifier based on the same data set, which
we will use for comparison. Since the covariances of the
Gaussian classes are equal, the Bayes classifier produces a
linear boundary between the classes. Recall that the Bayes
classifier is optimal with respect to the probability of error.

The test data set is drawn from the same Gaussian distri-
butions as for the training set. The data set consists of 200
data points from class one, and 10 from class two. A scatter
plot of the labeled test data set is shown in Fig. 1 (a). The
squares indicate class one, and the stars class two. It can be
seen that the data sets overlap, such that classification errors
are unavoidable.

The classification result using the Bayes classifier is
shown in Fig. 1 (b). It performs very well in terms of clas-
sification errors. It misclassifies only 7 data points. All the
misclassified data points belong to class two.

The spectral classifier obtains the result shown in Fig. 1
(c). The result is significantly different from that obtained
by the Bayes classifier. It classifies correctly 9 of the class
two data points. However, it also erroneously assigns 31
class one data points to class two. One class two data point
is wrongly assigned to class one.

Clearly, the Laplacian spectral classifier emphasizes
more to classify correctly the class two data points than the
class one data points. A situation can be imagined where the
class two data points correspond to seriously ill patients, for
which a cure exists if the disease is detected. Moreover, it
is possible to assume that the negative side-effects of the
cure can be tolerable (but possibly very unpleasant), even if
healthy people take the drug. In such a situation, the Lapla-
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(a) Training data.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(b) Spectral classification of test data.

Fig. 2. Result of classifying a data set consisting of two
ring-shaped classes.

cian spectral classifier may be a promising alternative, since
it emphasizes to classify correctly the least probable class.

The results presented in this experiment vary somewhat
depending on the training data and the test data, which is
drawn at random from the Gaussian distributions. However,
these differences are small, and the result presented here is
representative for most cases. It should be mentioned that
for P1 ≈ P2, the two classifiers perform equally good.

Experiment 2. The purpose of the second experiment is to
show that the spectral classifier can handle highly irregular
data shapes. Fig. 2 (a) shows the unlabeled training data set,
which consists of two ring-shaped classes. There are 100
training samples. Fig. 2 (b) shows the classification result
for a test set consisting of 844 test samples, drawn from the
same ring-shaped distributions. The classification result is
in fact completely correct, for this very challenging data set.
For illustration purposes, Fig. 2 (c) shows a scatter plot of
the first two coordinates of the test data represented in the
kernel feature space (note that the feature space data is 100-
dimensional). It can be seen that the structure of the data in
the kernel space is significantly different from the structure
of the data in the input space, enabling us to classify the data

based on the feature space means only.
Experiment 3. In this experiment, we classify a breast-

cancer data set into the two classes benign and malignant.
The purpose is to show that the proposed classifier also per-
forms well on a real data set of higher dimensionality than
for the previous two data sets.

The Wisconsin Breast-Cancer (WBC) database is the
source of this dataset, which consists of 683 data points (444
benign and 239 malignant). WBC is a nine-dimensional
dataset.

For the training data, 100 data points were selected at ran-
dom from the data set. We performed the classification 20
times, each time selecting different training data at random.
The test set consisted in each case of 583 data patterns. The
average correct classification rate was 96.0%, with a stan-
dard deviation of 0.01%.

5. CONCLUSIONS

We have presented a new spectral classifier based on the
Laplacian pdf distance. The training data set is optimally
mapped to the feature space using the eigenspectrum of the
Laplacian data matrix. New data points are mapped to the
feature space by the Nyström routine, where they are clas-
sified based on the angle with the means of the transformed
training data. The new classifier has been shown to perform
well on irregular and real data. Also, it exhibits the interest-
ing property that it emphasizes to classify correctly the least
probable data points.
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