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Abstract. Principal Components Analysis is an important and well-studied
topic in statistics and signal processing. Most algorithms could be grouped
into one of the folowing three approaches: adaptation based on Hebbian
updates and deflation, optimization of a second order statistical criterion, and
fixed point update rules with deffation. In this paper, we propose a completely
different approach that updates the eigenvector and eigenvalue matrices with
every new data sample, such that the estimates approximately track their trne
values. The performance is compared with traditional methods like Sanger
and APEX algorithm, as well as with a similar matrix perturbation based
method. The results show the efficiency of the algerithm in terms of
convergence speed and accuracy.

INTRODUCTION

Principal Components Analysis (PCA) is a well known statistical technique that
has been widely applied to solve many signal processing problems like data
reduction, feature extraction, signal estimation, detection and speech separation [1-
4]. PCA is nothing but the eigendecomposition of the data covariance matrix.
Analytical techniques [5] that solve PCA once the entire data is known exist.
These methods require extensive matrix operations and hence are not suitable for
real-time applications. In such cases, fast, adaptive, online solutions are desirable.

Majority of the existing algorithms for adaptive PCA are based on standard
gradient procedures [2,3,6-9]. The problem with these methods is that they are
extremely slow converging and their performance heavily depends on step-sizes
used. To alleviate this, subspace methods have been explored in [10-12].
However, many of these subspace techniques are computationally expensive. The
algorithm described in [13] showed fast convergence with little or no change in
complexity compared with the gradient methods. However this method and most
of the existing methods in literature rely on deflation technique, which brings in
sequential convergence of principal components. This potentially reduces the
overall speed of convergence of the algorithm,
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The recently developed simultaneous principal component extraction algorithm
called SIPEX [14] reduced the gradient search cnly to the space of orthonormal
matrices, resulting in fast and simultaneous convergence. However it has a very
high computational complexity due to the involved trigonometric function
evaluations. A recently proposed approach suggested the method of calculating the
eigenvectors and eigenvalues iteratively using a first order matrix perturbation of
the data covariance matrix estimate with every new sample obtained [15].
However the performance (speed and accuracy) of this algorithm is hindered by
the general symmetric structure of the perturbed covariance matrix. In this paper,
we will present an algorithm that undertakes a similar perturbation approach, but
in contrast, the covariance matrix will be decomposed into its eigenvectors and
eigenvalues at all times, which will reduce the perturbation step to be employed on
the diagonal eigenvalue matrix. This restriction results in a faster converging and
more accurate subspace tracking algorithm.

The paper is organized as follows. First, we present a brief overview of the PCA
problem, Second, the proposed recursive PCA algorithm (RPCA) is motivated,
derived and extended for non-stationary signal environments. Some of the
practical aspects of the algorithm are then discussed. Next, a set of computer
experiments is presented to demonstrate the convergence speed and accuracy
characteristics of RPCA. Finally, we conclude the paper with remarks and
observations about the algorithm.

PROBLEM DEFINITION

Without loss of generality, we will consider a real-valued zero-mean, »-
dimensional random vector X. The projections of x onto unit-norm vectors w;’s are

given byy; = w?x. Principal components are those vectors w along which the

variance of y is extremal.

The first principal component direction is defined as the solution to the
following constrained optimization problem, where R is the input covariance
matrix:

Wy :argmawaRw subject to wl

W
The subsequent principal components are defined by including the additional
constraints to the problem that enforce the orthogonality of the sought component
to the previously obtained ones:

w=1 M

W; = argmax wiRw, st wiw=1, wTw| =0,1<j @
w

The overall solution to this problem tums cut te be the eigenvector matrix of the
input covariance matrix R. In particular, the principal component directions are
given by the eigenvectors of R arranged according to their corresponding

eigenvalues (largest to smallest) [5].
In signal processing applications, the needs are different. The input samples are
usually acquired one at a time (1.e., sequentially as opposed to in batches), which
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necessitates sample-by-sample update rules for the covariance and its eigenvector
estimates. In this setting, this analytical sclution is of little use, since it is not
practical to update the input covariance estimate and solve a full
eigendecomposition problem for each sample. However, utilizing the recursive
structure of the covariance estimate, it is possible to come up with a recursive
formula for the eigenvectors of the covariance as well. This will be described in
the next section.

RECURSIVE PCA DESCRIPFTION

Let x be an # dimensional zero mean wide sense stationary input vector. Our
aim is to find the principal components of x at each instant of time k. The
correlation matzix of X at time k is defined as:

k
_1 7 _k-1 1.7
Ry _;gxixi =7 Rk-ﬁ;"kxk (3)

If Q and A are the orthonormal eigenvector and diagonal eigenvalue matrices of R,
then Ry =Q;A4QF andR;_; = Qs A, QF . So(3) reduces to

Qi (kA L)QL =34x5 +(k-1)Qs A, QT 4)
If we leta, = Q'{_]xk . {4) can be written as
Q4 (kAL)Q] = Qpil(k—DA +0z0) 10} )

If ¥, and D, are the orthonormal eigenvector and diagonal eigenvalue mairices of
(k—DA; +aa; , then

(k-DAgy +azel =V,Dv7 (6)
So (5) now reduces to
Qu (FAL)Q) = Quy VD V] QL U]

By comparing both sides of (7), the recursive eigenvector and eigenvalue update
ritles turn out to be:

Q) =Qp1V
k ~1YE (8)
Ag =Dy /k

This is the basic equation for updating the eigenvalves and eigenveciors of the
correlation matrix R. The problem now is to determine the eigendecomposition of

(k—l)Ak_lJrakaf; {ie. to find V, and Dy}, which is difficult to solve

analytically. So we will make use of first erder matrix perturbation analysis.
Perturbation analysis to find V, and Dy: Consider the following sample

perturbation to the eigenvalue matrix: (k—~1)A;_; +azal . When & is large, this
matrix is basically a diagonal matrix, which means that I}, will be close to
(k—1DA;_y and V; will be close to the identity matrix 1, The matrix a k“i is
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said to perub the diagonal matrix (k—DA;_; as a result of which
D, =(k-1)A;_ +P, and V,~=I+Py, where P, and Py are small perturbation
matrices. Now if we can find these perturbation matrices, we would have solved
the  eigendecomposition problem of (k-DAj;, +4¢ ka{ . Letting
A={k-1Aj_, V;DyV] can be expanded as,
ViDVI =1+ Py XA+ Py XTI+ Py)T
—_-A+AP‘1; + Py +PAP$ + Py A
+PyAPT + PyP, + Py P, PY
=A+P, +DPY +PyD
+ PVAP5 + PVPAP\{

®

Substituting this equation in (6) and assuming PVAP%; and PVPAP\I; are
negligible,

azal =Py +D,PY +PyD, (10)
The orthonormality of V brings an additional equation that characterizes Py.
Substituting V=I+Py in VV’=l, and assuming thatPy P‘?; =0, we
have Py = —P‘J; . So combining the fact that the Py is anti-symmetric and P, , D;
are diagonal, we can get the solution,

a? = (i,))’" element of P (1
;i .o th ..
————— =i, /)" elementof Py ,i = j
zlj+cx§ —/1? —a,? (12)
0 =(i,/)" element of Py

where A, 4;are the elements of the eigenvalue matrix (4-1)A, ;.

THE RPCA ALGORITHM

The RPCA algorithm is summarized in Table 1. There are a few practical issues
regarding the operation of the algorithm, which will be addressed in this section.

Memory Depth Parameter (1):In a stationary environment, where all samples
are weighted equally, the memory depth parameter must be set to A=1/k. The
recursive update for the covariance matrix is given by (3).

In a non-stationary environment, a first order dynamical forgetting strategy
could be employed by selecting a fixed forgetting factor. Setting 2,= 2,

Ry =(1- DRy +Axyx] (13)

In this forgetting scheme, A=(0,1) is selected to be very small. Considering that
the average memory depth of this recursion is 1/1 samples, the selection of this
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Table 1: The Recursive PCA Algorithm
1. Initialize the orthonormal eigenvector matrix Qu =1 and diagonal eigenvalue
matrix A, =diag(Ry) where Ry is the estimated covariance matrix using Ay
samples of input

2, At each time instant £ do the following:
a. (et input sample x,.
b. Set memery depth parameter A = 1/{(k+{#1)Ng), where t is a positive
integer.

c. Calculate g = Q:{—l Xy

d.Use (11) and (12) to find perturbations Py and P, corresponding to
(1= ) Ay + Aol .

e. Update eigenvector and eigenvalue matrices:
Qp = Qg1+ Py}
Ap == )A g APy

f. Normalize the norms of eigenvector estimates by Q, = Q;T; , where T is
a diagonal matrix containing the inverses of the norms of each column of
Q-

g Correct eigenvalue estimates by A, = Kka—z , where ;2 is a diagonal

matrix containing the squared norms of the columns of Q; .

parameter presents a trade-off between tracking capability and estimation
variance.

Initializing the eigenvectors and eigenvalues: The eigenvector matrix Qp and
eigenvalue mafrix Ay can be initialized by using the first Ny samples to obtain an
unbiased estitnate of covariance matrix R. Qp can be initialized to 1 and the
eigenvalues can be initialized to the sample variances of the each input entry over
Ny semples (i.e. Ag=diag Rng). Since we had already used Np samples, the
iterations in step 2 of Table 1 can be applied to the subsequent sampies i.e.
samples from Ngt+1 to N,

In the stationary case {where A,=1/k), the perturbation approximations in the
first few iterations in step 2 of table 1 will not be accurate. This is because for
small values of k, (12, )4, + 4@ k“{ is not strongly diagonal, contrary to
our agsumption, This problem could be avoided if in the step 2, the index k could
be started from a large initial value, which effectively means using large number
of samples in the initialization {(i.e. choosing large Np). In practice, this is often
undesirable. The alternative is to perform the initialization still using a small
number of samples, but setting the memory depth parameter to Ag=1/(k+(71)Np).
By doing this, when the iteration starts at sampie k=Ny+1, the algorithm thinks that
the initialization is actually performed using y =r Np samples. Instead a time
varying y (y=nesp(-k/ ), exponentially decaying profile, is found to produce better
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estimates of eigenvalues and eigenvectors than a fixed y. So such y will be used
for ail the simuiations shown in the next section for a stationary environment.
Therefore, from the point-of-view of the algorithm, the data set looks like

{31 Xy Yy X s Xy 1 X 1 X ) (14)
repeate&r T times

The resulting covariance estimator will be biased. The estimated covariance matrix
at the end of the iterations is :

N (r —1)Ny

- Ry + R 15

N+(-DNy ¥ N+G-DN, » (15)
So the bias introduced by tricking the algorithm can be asymptotically diminished
(ie.as N > o).

In the non-stationary case (i.€., 4;=4 ), the same initialization strategy can be
used i.e. Qy=I and A, =diagRup. The initialization bias is not a problem, since its
effect will diminish in accordance with the forgetting time constant anyway. Also,
in order to guarantee the accuracy of the first order perturbation approximation, we
need to choose the forgesting factor A such that (1- A)/ A is large. Typically, a
~ forgetting factor & < 107 will yield accurate results.

Ry, biased =

EXPERIMENTAL RESULTS

Convergence Speed Analysis:_ In this experiment, the goal is to investigate the
convergence speed and accuracy of the RPCA algorithm. For this, n-dimensional
random vectors are drawn from a normal distribution with an arbitrary covariance
matrix. In particular, the theoretical covariance matrix of the data is given by AAT,
where A is an #x# real-valied matrix whose entries are drawn from a zero-mean
unit-variance Gaussian distribution. This process results in a wide range of
eigenspreads (as shown in Fig. 1), therefore the convergence results shown here
encompass such effects.

Specifically, the results of the 3-dimensional case study are presemted here,
where the data is generated by 3-dimensional normal distributions with randomly
selected covariance matrices. A total of 1000 simulations (Monte Carlo runs) are
carried out for each of the three farget eigenvector estimation accuracies
(measured in terms of angle between the estimated and actual eigenvectors): 10°,
5°, and 2°. The convergence time is measured in terms of number of iterations it
takes the algorithm to converge to the target eigenvector accuracy in all
eigenvectors {not just the principal component). The histograms of convergence
times (up to 10000 samples) for these three target accutacies are shown in Fig. 2,
where everything above 10000 is also lumped into the last bin. In these Monte
Carlo runs, the initial eigenvector estimates were set to the identity matrix and the
randomly selected data covariance matrices were forced to have eigenvectors such
that all the initial eigenvector estimation errors were at least 25°. The initial » value
. was set to 400 and the decay time constant was selected to be =50 samples.
Values in this range were found to work best in terms of final accuracy and
convergence speed in extensive Monte Carlo runs.
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Figure 1. Distribution of eigenspread values for AA”, where
Aj, is generated to have Gaussian distributed random entries.
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Figure 2. The convergence time histograms for RPCA in the
3-dimensional case for three different target accuracy levels.

It is expected that there are some cases, especially those with high eigenspreads,
which require a very large number of samples to achieve very accurate eigenvector
estimations, especially for the minor components. The number of iterations
required for convergence to a certain accuracy level is also expected to increase
with the dimensicnality of the problem. For example, in the 3-dimensional case,
about 2% of the simulations failed to converge within 10° in 10000 on-line
iterations, whereas this ratio is about 17% for 5 dimensions. The failure to
conv4erge within the given number of iterations is observed for eigenspreads over
5x10%

In a similar setup, Sanger’s rule achieves a mean convergence speed of 8400
iterations with a standard deviation of 2600 iterations. This results in an average
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Figure 3. The average eigenvector direction estimation errors versus iterations for
the first order perturbation method(thin dotted lines) and for RPCA (thick solid
lines)
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Figure 4. The average eigenvector direction estimation errors versus iterations for
the first order perturbation method (thin dotted lines) and for RPCA (thick solid
lines) in a piecewise stationary situation. The eigenstructure of the input abruptly
changes every 5000 samples.

eigenvector direction error of about 9° with a standard deviation of 8°. APEX on
the other hand converges rarely to within 10°. Its average eigenvector direction
error is about 30° with a standard deviation of 15°.

Comparison with Alternative First Order Perturbation PCA:The first order
perturbation PCA algorithm [15] is structurally similar to the RPCA algorithm
presented here. The main difference is the nature of the perturbed matrix: the
former works on a perturbation approximation for the complete covariance matrix,
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whereas the latter considers the perturbation of a diagonal matrix. We expect this
structural restriction to improve the performance of the aigorithm in terms of
overall convergence speed and accuracy.

An experimental setup similar to that in the previous experiment (i.e. a
stationary envircnment) was used. The data is generated by a colored time-series
using a time-delay line {making the procedure a temporal PCA case study).
Gaunssian white noise is colored using a two-pole filter whose poles are selected
from a random uniform distribution on the interval (0,1). A set of 15 Monte Carlo
simulations was run on 3 dimensional data generated accordingly. The two
parameters of the first order perturbation method were optimized to &=107/6.5 and
5=10". The parameters of RPCA were set to %=300 and =100, The average
eigenvector convergence curves are shown in Fig, 3.

To illustrate the performance of RPCA for non-stationary cases, a piecewise
stationary colored noise sequence is generated by filtering white Gaussian noise
with single-pole filters with the following poles: 0.5, 0.7, 0.3, 0.9 (in order of
appearance). The forgetting factor is set to a constant =107, The two parameters
of the first order perturbation method were again set to &=107/6.5 and =107, The
results of 30 Monte Carle runs were averaged to obtain Fig. 4.

CONCLUSIONS

In this paper, a novel perhabation-based fixed-point algorithm for subspace
tracking is presented. The fast tracking capability is enabled by the recursive
nature of the complete eigenvector matrix updates. The proposed algorithm is
feasible for real-time implementation since the recursions are based on well-
structured matrix multiplications that are the consequences of the rank-one
perturbation updates exploited in the derivation of the algorithm. Performance
comparisons with traditional algorithms, as well as a similar perturbation-based
approach demonstrated the advantages of the RPCA algorithm.
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