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Abstract. In this paper, we discuss an intriguing relationship be-
tween information theoretic learning (ITL), based on Parzen win-
dow density estimation, and kernel-based learning algorithms., We
show that some of the widely used ITL cost functions, when esti-
mated by the Parzen method, can be expressed in terms of inner
products in a kernel feature space defined by a Mercer kernel,
where the Mercer kernel, in fact, is the Parzen window. This link
gives a theoretical criterion for the selection of the Mercer kernel,
based on density estimation. Also, we show that the support vec-
tor machine (SVM), as an example of a well-known kernel-based
learning algorithm, can be examined in an information theoretic
framework, using weighted Parzen windows for density estimation.

INTRODUCTION

During the last decade, research on Mercer kernel-based learning algorithms,
predominantly the support vector machine (SVM) theory [1, 2], but also
methods like kernel Fisher discriminant (KFD) analysis [3] ard kernel prin-
cipal component, analysis (KPCA) [4], have flourished. These methods have
proven to achieve excellent results on a number of applications, ranging from
e.g. pattern and object recognition [5], time series prediction [6] to DNA and
protein analysis [7]. One problem with the kernel methods though, is that
it is not clear how to choose the actual kernel function. Often the Gaussian
radial-basis-function (RBF) is used, in which case it still remains an open
question exactly how to choose the width of the RBF kernel.

Independently of the activity on kernel methods, another line of research
has recently emerged that is coined information theoretic learning [8]. ITL
addresses the issue of extracting information directly from data in a non-
parametric manner. The learning-from-examples scenario starts with a data
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set that globally conveys information about a real-world event, and the goal
is to capture the information in the parameters of a learning machine. The
backbone of ITL has been the utilization of Renyi’s measure of entropy as
a cost function for learning, in addition to approximations to the Kullback-
Leibler probability density divergence. These quantities lends themself nicely
to non-parametric estimation via Parzen windowing for density estimation.
The ITL framework has been successfully applied in a variety of learning
scenarios, such as object recognition (8], time series prediction [9], blind de-
convolution [10], blind source separation [11] and clustering [12].

The purpose of this paper is to provide a first step towards unifying the
two aforementioned frameworks for learning, by demonstrating an intriguing
duality between the Parzen and the Mercer kernels. We show that the most
widely used ITL cost functions, when estimated by the Parzen method, can
be expressed in terms of inner products in a kernel feature space defined by
a Mercer kernel, which in fact is the kernel in the Parzen window method.
Having illustrated this fact by several examples, we turn to the most famous
kernel learning machine, the SVM, and show that it can be expressed in terms
of one of the ITL density divergence measures, when the pdfs are estimated
by a weighted Parzen window estimator. Based on the discussion we give
in this paper, we conjecture that the kernel-based learning algorithms that
are expressed in terms of inner products in the kernel feature space, are in
fact learning by implicitly utilizing non-parametric estimates of probability
densities in the input space. This view gives a theoretical criterion for select-
ing the Mercer kernel to be used in the kernel-based methods, namely the
kernel that would lead to a relatively accurate estimate, if used as the Parzen
window in density estimation.

The organization of this paper is as follows. In section 2 we review the
basic theory of nonlinear kernel feature spaces. In section 3 we discuss some
of the cost functions utilized in information theoretic learning, and show how
they can be translated into quantities defined in the Hilbert feature space via
Parzen windowing. Thereafter, in section 4, we show how the SVM classifier
cost function can be expressed in terms of an information theoretic density
divergence via weighted Parzen window estimation. Finally, in section 5 we
make our concluding remarks.

KERNEL FEATURE SPACES

Kernel-based learning algorithms make use of the following idea: via a non-
linear mapping

d:R 5 F
x - Bx) {1)

the data x;,...,xv € R is mapped into a potentially much higher di-
mensional feature space F. For a given learning problem one now con-
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siders the same algorithm in F instead of in R?, that is, one works with
B(x;),..., B(xy) € T,

This mapping is of particular interest in cases where the learning algo-
rithm is expressed only in terms of inner products. The reason is that one can
use a highly effective trick for computing inner products in the feature space
using kernel functions, without even knowing the exact mapping €. This
can be advantageous since we do not have to execute the learning algorithm
in a very high dimensional space, which can cause intractable problems,

Consider a symmetric kernel function k{x,¥). fk:CxC - Ris a
continuous kernel of a positive integral operator in a Hilbert space L.(C) on
a compact set ¢ € RY, ie.

V€ L(C) : [c k(x,¥) 7 (0 (¥)dxdy > 0, (2)

then there exists a space F and a mapping @ : B? — F, such that by Mercer’s
theorem [13]

Nr
kix,y) = (®(x). 8(y)) = Z At (x4 (y), {3)

=1

where {-, -} denotes an inner product, the 1;’s are the eigenfunctions of the
kernel and Ny < oo [6, 1]. In this case

&(x) = [V A (x), VA (x),.. |7, )

can potentially be realized.
The most widely used Mercer kernel is the radial-basis-function (RBF)

IIx — yi* .
}C(X, y) = exp {—T - (3)
A RBF kernel function corresponds to an infinite-dimensional Hilbert feature
space, since the RBF has an infinite number of eigenfunctions.

ITL COST FUNCTIONS IN THE KERNEL SPACE

In this section, we examine some of the most widely used cost functions in
information theoretic learning, and show how they can be estimated directly
from data via the Parzen window method, utilizing the convolution theorem
for Gaussians. Most importantly, we also show that these cost functions
can in fact be expressed in terms of inner preducts in a Hilbert feature space
defined by a Mercer kernel, where the Mercer kernel is identical to the window
function used in Parzen density estimation.

In this section, probability density functions (pdfs) are estimated by the
well known Parzen window method [14]. Let f(x) be an estimate of f(x).
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Then a non-parametric asymptotically unbiased and consistent estimate of f
can be defined as {14]

N

: 1

fx) = —NEW(x,xi), ()
where W is the Parzen window, or kernel. The Parzen window must integrate
to one. It is often chosen to be the Gaussian kernel

]
L exp{-”xzjsf”” 3 -

In [8], a principled approach of designing practical information theoretic
criteria using Renyi’s entropy of order two (quadratic entropy) was proposed.
Renyi’s quadratic entropy can be easily integrated with the Parzen window
estimator, hence providing a means to estimate the entropy directly from the
data set. Renyi’s entropy is given by

“;0'2 (x: xi) =

Hy(x) = —log/fz(x)dx. (8

Since the logarithm is a monotonic function, the quantity of interest is V (x) =
[ FP(x)dx, which was called the information potentin! [8), because of an
analogy to a potential energy field. We have that

1 & 1
f ¥ S W (o6, %) 5 3 W (x,x;)dx
=1

=1

1 N N
= mZZ / W, (X, X: ) W,2 (X, X; )dx

=1 j=1
1
= ﬁf Z Z"Vgaz (X§,x_j), (9)

where in the last step the convolution theorem for Gaussians has been em-
ployed [8].

The key point of this paper, is to note is that Was2{x;,%;) is a Gaussian
RBF kernel function, and hence it is also a kernel function that satisfies
Mercer’s theorem. Hence

Vix)

Wagz (Xi,%;) = k(xi, %;) = (B(x;), B(%5)) 5 (10

where &(x;) = [vArh1(x:), vVierps(x:), ... 1%, i = 1,..., N. Now we rewrite
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(9} as follows

1 N N
Vi) = 53202 (20m),20x))

i=1 j=1
1 » 1 &
= <NZ¢‘(’€£),§Z‘I’(XJ')>
i=1 Jj=1
= (m® m®*)
= [lm®|], (11)

where m® is the mean vector of the $-transformed data. That is, the infor-
mation potential turns out to be equal to the sum of inner products between
all pairs of data points in the Hilbert kernel space, which can be expressed
as the squared norm of the mean vector of the data in that space. This
connection was previously pointed out by Girolami [15] in a study relating
orthogonal serics density cstimates to KPCA. It is also interesting to note
that (11) can be interpreted as the 2-norm of the probability mass function
P =(p1,ps,....pn), when P is considered a peint in a N-dimensional space
(8].

In [8], two approximations to the Kuliback-Leibler density divergence were
proposed, that, like Renyi’s entropy, can be easily integrated with a Parzen
window density estimator. If the pdfs under consideration are the joint den-
sity and the product of marginals, these divergence measures approximate the
Kullback-Leibler mutual information, as a measure of independence between
random variables.

First we consider the Cauchy-Schwarz (CS) pdf divergence. It was named
s0 because it was obtained by replacing inner products between vectors in
the Cauchy-Schwarz inequality, by inner products between pdfs. It is defined
as [8]

Pesipa) = —log AP 0
VI P x)x [ g2 (x)dx

It can be secn that Deg is zero iff the two densitics are equal, and goes to
infinity as the overlap between the two pdfs goes to zero. Again, gince the
logarithm is a monotonic function, the quantify of interest is the quantity in
the argument of the log in (12). This quantity was called the Information
Cut (IC) in [16), because it was shown that it is closely related to the graph
theoretic notion of a cut, which is a measure of the cost of partitioning a
graph into two pieces. Again, we estimate the two pdfs by the Parzen window
method

13 1 &
px) = ~ ; Wee(x,x;), §(x)= Ejglwaz (%, %j). (13)
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By a similar calculation as above, the Information Cut can be expressed as;
N N,
Zi:l]. j=21 Wyga (%, x4)

IC = _ .
VN S Wapn (e, xe) T0% SN2, Wag (x5 %51)

Equation (14) provides a means for estimating the divergence between two
continuous densities directly from a set of data samples. In analogy to (11),
this expression can also be expressed in terms of inner products in the Hilbert
feature space, since Wa,z(x;,%;) = k(x;,%;) is a Mercer kernel. When we
carry out an exact same type of caleulation as in {11), we obtain

(14)

m® m?
IC:—-—-H——»(@”; “2 5 (13}
|lmg |[2][m ||
where m;f' is the mean vector in the Hilbert feature space with respect to

the #-mapped data drawn from p{x)}, and m;I’ is the feature space mean
vector with respect to the ®-mapped data drawn from ¢{x). Hence, quite
interestingly, it turns oul that the CS information theoretic pdf divergence
measure has a dual interpretation as a measure of the cosine of the angle
between the unit norm mean vectors in the kernel Hilbert feature space.

The CS divergence measure has recently been utilized as a cost function
for clustering by the current authors [12}, where the optimization was carried
out using the Lagrange mulsiplier formalism.

Finally, a second pdf divergence measure for ITL was also proposed in
18] based on the Euclidean difference of vectors inequality. The Euclidean
distance (ED) is defined as [8]

Drp(p,q)

1l

[ 100 = g0y ax
fpz(x)dx+ [qg(x)dx-Q/p(x)q(x)dx > 0. (16)

Il

Performing a similar analysis as above by estimating the densities by the
Parzen method, the Dgp can be expressed as follows

Ny N Ny N

KI}?Z Zk(xi,x,-'] + %Z Z k{x;, %)

=l ¥'=1 J=lj'=1
Ny No

1
—_— QWZZIC(XHX‘?)

i=1 j=1

Den(p.q)

i

= [jmg —mg|]*. (17)

Hence, the ED information theoretic pdf divergence measure can be seen to
also have a geometric interpretation in the Hilbert feature space. The Dgp
measures the square of the norm of the difference vector between the two

means mg’ and mg’. If the norm of the difference vector goes to zero, the
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corresponding continuous pdfs in the input space are maximally aligned with
each other, that is, having a maximum amount of overlap.

Our discussion in this section clearly shows that each of the ITL cost
functions has a dual representation in the Hilbert kernel feature space. As
such, the ITL learning algorithims are also Mercer kernel-based learning algo-
rithms. Since the ITL algorithms are by definition linked to pdf estimation,
the kernel versions of these algorithms are fundamentally linked to pdf esti-
mation too. This gives a theoretical criterion for selecting the Mercer kernel,
namely the Mercer kernel that would lead to a relatively accurate density
estimate if used as the Parzen window in density estimation.

We can also draw the following conclusion: Whenever we encounter an

expression like

S5 ki xy), (18)
[

where the RBF kernel function k satisfies Mercer’s conditions, it has a dual

expression as an imtegral over a product of pdfs, Le. [ f?(x)dx, where the

density is estimated by the Parzen window method (up to a constant, if the

kernel does not integrate to one).

In this exposition, we have estimated the information theoretic cost func-
tions using Parzen window estimators with uniform weighting on each window
function. In the next section, we briefly examine the non-linear SVM classi-
fier, the arguably most well-known Mercer kernel-based learning algorithm.
We show that it can in fact be expressed in terms of the ED information
theoretic pdfl divergence measure that we discussed above, only that the pdfs
are estimated by a weighted Parzen window estimator, instead of a uniform,
as a consequence of the maximum margin metric that constitutes the basis
of the SVM theory,

THE SVM AS AN INFORMATION THEORETIC COST
FUNCTION

In this section we assume that the SVM theory is familiar to the reader.
We refer to [1, 2] for details. We are given the training set {x; d;}, i =
1,...,N, d; € {—~1,1}, x; € R%. The task is to train a SVM classifier, such
that it creates a maximum margin linear classifier in the kernel feature space.
The problem can be formulated in the Lagrange formalism by introducing
positive Lagrange multipliers oy, ¢ = 1,..., N. After expressing the problem
by the Wolfe dual Lagrange function, the function to be maximized is the

following
N
L D= Z oy —

i=1

™) -

N N
Z Z a,—a_,-d,-djk(x,-,xj), (19)
i=1 j=1
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subject to the constraints

N
Z aidg' = 0, (20)
i=1

o; >0, Vi (21)

The hyperplane weight vector in the kernel feature space can be shown to be
given by [2]

N
W= ZaidiQ(Xg). (22)
i=1

The maximum margin metric, which is the basis for the SVM theory, specifies
the form of the Karush-Kuhn-Tucker (KKT) conditions [2], which have to be
satisfied at the solution (22). These conditions imply that only those cr; which
correspond to a $(x;) which lies on the margin of the hyperplane, will have a
value other than zero. This sparseness condition in the kernel feature space,
which follows from the maximum margin metric, is crucial for the superior
generalization ability of the SVM classifier.

Now, we rewrite (19). Associate the Lagrange multipliers o with the first
class, and o} with the second class. Note that M= 2?’1 o) = 4 by
(20). Now, (19) can be rewritten as follows

‘l

N
Lp = 7{2 Z oo k(. X))

i=1 #'=1

Nz Np Ny N2
+ DD eGankixgxp) — 230 D majk(xi, %)}
== ==
Ny Ny
= 2A Agzzaal k(xtaxz)
i=11i=1
N2 Na N1 Ny
+ AzZZa k(xz; %) A2ZZaakxt,xJ)} (23)
=1 =1 15=1

This expression can in fact be seen to depend on the ITL quantity Dep(p, g),
exarnined in the previous section. To see this, estimate the density p(x) non-
parametrically based on the data from the class corresponding to d; = 1, and
estimate the density g(x) based on the data for which d; = —1. However,
now the densities are estimated using weighted Parzen estimators, defined as

1

px) = Zzﬂ'ik(x:xi) (24)
i=1
1Y

a(x) = ZZa;k(x,xj). (25)
i=1
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That is, while training a SVM, one effectively adjusts the weighting compo-
nents on the Parzen windows, such that Dep{p,¢) is minimized, while at
the same time keeping the weighting components, «;, o}, from going to zero.
Hence, (19), which is to be maximized, can also be written as

AZ
Lp=24- 7DED(p= 7)- (26)

It is the minimization of Dgp(p, ¢) that guarantees the selection of the sup-
port vectors as those points on the boundary. This example shows that the
S5VM can be related to ITL and non-parametric pdf estimation via weighted
Parzen windowing.

CONCLUDING REMARKS

In this paper, cur aim was to provide a first step towards unifying the two re-
search areas known as information theoretic learning and kernel-based learn-
ing, respectively. We have shown that the most widely used ITL cost func-
tions, when estimated non—para.métrically using the Parzen window density
estimator, can be expressed in terms of inner products in a Hilbert kernel
feature space defined by a Mercer kernel, where the Mercer kernel is in fact
the Parzen window. Our discussion reveals an intriguing duality between the
Mercer kerne] and the Parzen window, which provides a theoretical criterion
for the selection of the Mercer kernel, namely as the kernel that would lead
to a relatively accurate pdf estimate if used as the Parzen window in density
estimation. Moreover, we have argued that the kernel-based methods that
can be expressed only in terms of inner products in the Hilbert feature space,
likewise have a dual expression as an ITL cost function, dependent on inte-
grals over products of pdfs. This link will be further pursued in our future
work.
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