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Abstract. Recently, the authors developed the Minimax Mutual Information al-
gorithm for linear ICA of real-valued mixtures, which is based on a density es-
timate stemming from Jaynes’ maximum entropy principle. Since the entropy 
estimates result in an approximate upper bound for the actual mutual informa-
tion of the separated outputs, minimizing this upper bound results in a robust 
performance and good generalization. In this paper, we extend the mentioned 
algorithm to complex-valued mixtures. Simulations with artificial data demon-
strate that the proposed algorithm outperforms FastICA. 

1   Introduction 

Independent Component Analysis (ICA), which may be viewed as an extension of 
Principle Component Analysis (PCA), is a method of finding a set of directions to 
minimize the statistical dependence of the projections of input random vector x on 
these directions. As a measure of independence between random variables, mutual 
information is considered as the natural criterion for ICA since minimizing mutual 
information would make the components of output as independent as possible. One 
commonly used definition of mutual information is Shannon’s mutual information. 
Given n random variables nYY ,.....,1 whose joint probability density function (pdf) is 

)(yYf  and marginal probability density functions (pdfs) are defined as f1(y
1),…, 

fn(y
n) respectively, then Shannon’s mutual information [1] is defined as follows 
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where the components yi, i=1,…,n constitute the vector y. Meanwhile, we can also 
write Shannon’s mutual information as the sum of marginal and joint entropies [1] of 
these random variables as, 
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where Shannon’s marginal and joint entropies [1] are given by 
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respectively. Three of most widely known algorithms for ICA, namely JADE [2], 
Infomax [3], and FastICA [4], use the diagonalization of cumulant matrices, maximi-
zation of output entropy, and fourth order cumulants separately, instead of using 
minimization of output mutual information. The difficulties associated with minimum 
mutual information are the lack of robust pdf estimators; most of them suffer from 
sensitivity to the underlying data samples.  

A common method in developing information theoretic ICA algorithms is to use 
polynomial expansions to approximate the pdf of the signals, e.g. Gram-Charlier, 
Edgeworth, and Legendre polynomial expansions. In order to estimate the signal pdf, 
a truncated polynomial is taken, evaluated in the vicinity of a maximum entropy den-
sity [5]. Alternative techniques include Parzen windowing [6], and orthogonal basis 
functions [7].  Other researchers also use kernel estimates in ICA [8,9,10].  

Recently, we used the minimum output mutual information method to develop an 
efficient and robust ICA algorithm, which is based on a density estimate stemming 
from Jaynes’ maximum entropy principle, where estimated pdfs belong to the expo-
nential family [11, 12]. This approach approximates the solution to a constrained 
entropy maximization problem and provides an approximate upper bound for the 
actual mutual information of the output signals, and hence the name Minimax Mutual 
Information. In addition, this method is related to ICA methods using higher order 
cumulants when a specific set of constraint functions are selected in the maximum 
entropy density estimation step. 

In this paper, we extend this Minimax Mutual Information algorithm to complex-
valued mixtures. The algorithm is compared with the complex-valued FastICA 
method. The simulations demonstrate that complex-valued Minimax ICA exhibits 
better performance. 

2   The Problem Statement 

Suppose that there are n mutual independent sources s, whose components are zero-
mean complex-valued signals. We also assume the independence between real and 
imaginary parts of source signal.  The source signal s is mixed by an unknown linear 
mixture of the form z = Hs to generate n observed random vector z, where the square 
matrix H is invertible. In this case, the original independent sources can be obtained 
from z by a two-stage process: spatial whitening to generate uncorrelated but not 
necessarily independent mixture x = Wz, and a coordinate system rotation in the n-
dimensional mixture space to determine the independent components y = Rx [5,8,13]. 
The whitening matrix W is obtained from the eigendecomposition of the measure-

ment of covariance matrix. Namely, TW 2/1−= , where Λ denotes the diagonal 
eigenvalue matrix and Φ denotes the corresponding orthonormal eigenvector matrix 
of the mixture covariance matrix Σ=E[zzT] provided that the observations are zero 
mean. The coordinate rotation is determined by an orthonormal matrix R parameter-
ized by Givens angles [15]. Specifically the procedure involves the minimization of 
the mutual information between the output signals [5]. Considering the fact that the 
joint entropy is invariant under rotations, the definition of mutual information in (2) 
reduces to the summation of marginal output entropies for this case. Namely,  
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where the vector is composed of Givens angles .,....,1,1,....,1, nijniij +=−=θ The 

Givens parameterization of a rotation matrix involves the multiplication of in-plane 

rotation matrices. Each of the matrices )( 2,1
ij

ijR θ  for the complex-valued signal is 

constructed by starting with an nn ×  identity matrix and replacing the en-

tries ( )thii, , ( )thji, , ( )thij, , ( )thjj, by )exp(cos 21
ijij jθθ , 1sin ijθ , 1sin ijθ− , and 

)exp(cos 21
ijij jθθ − , respectively, where 1θ is the angle for the real part and 2θ is for 

the imaginary part. The total rotation matrix is then defined as the product of these 2-
dimensional rotations parameterized by n(n-1) Givens angles to be optimized: 
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The described whitening-rotation procedure through Givens angles parameteriza-
tion of the rotation matrix is widely used in ICA algorithm, and many studies have 
been done on the efficient ways of dealing with the optimization of these parameters. 

3   The Maximum Entropy Principle 

Jaynes’ maximum entropy principle states that one must maximize the entropy of the 
estimated distribution under certain constraints so that the estimated pdf fits the 
known data best without committing extensively to the unknown data because the 
entropy of a pdf is related with the uncertainty of the associated random variables.  

Given the nonlinear moments αk=EX[fk(X)], the maximum entropy pdf estimate for 

X is obtained by solving the following constrained optimization problem. 
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where RCp
X

→:  is the pdf of a complex-valued variable, and fk:C→R are the con-

straint functions defined a priori. Using calculus of variations and the Lagrange mul-
tipliers method, we can get the optimal pdf for the complex-valued signal [1] 
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where T
m ],....[ 1 λλ= is the Lagrange multiplier vector and )(λC denotes the nor-

malization constant. It is not easy to solve the Lagrange multipliers simultaneously 
from the constraints in case of continuous random variables due to the infinite range 
of the definite integrals involved. We use the integration by parts method under the 
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assumption that the actual distribution is close to the maximum entropy distribution. 
Consider the kth constraint equation,  
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where ),( irk xxf is the nonlinear moment of the real and imaginary parts of the sig-

nal, denoted by ir xx , . The integrand covers the whole real and imaginary ranges. 

We first give the following definitions: 
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Integrating by parts over the real part the double integral in (9), we obtain 
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Meanwhile we can also do partial integration over the imaginary part such that  
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If the functions ),( irl xxf are selected such that their integrals ),( irl xxF do not di-

verge faster than the decay rate of the exponential pdf )(xp
X

, then the first terms on 

the right hand sides of (11) and (12) go to zero. For example, this condition would be 
satisfied if moments of the random variable were defined as the constraint functions 
since ),( irl xxF will be a polynomial function and )(xp

X
decays exponentially. Then 

adding (11) and (12) yields the expression for kα  
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Note that the coefficients klβ  can be estimated using the sample mean. Finally, in-

troducing the vector T
m ].....αα=  and the matrix klβ= , the Lagrange multi-

pliers are given by 

2
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This method provides a simple way of finding the coefficients of the estimated pdf 
directly from the samples when  and are estimated using sample means. 

4   Gradient Update Rule for the Givens Angles 

Minimax ICA minimizes the cost function in (5) using the entropy estimate corre-
sponding to the maximum entropy distribution described in the previous section. A 
gradient descent update rule for the Givens angles is employed to adapt the rotation 
matrix. The derivative of marginal entropy with respect to a Givens angle is 
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where oλ  is the Lagrange multiplier parameter vector for the pdf of tho  output signal 

and o
kα  is the value of the thk constraint for the pdf of the tho  output. Using (13) to 

get the solution for oλ  and the sample mean estimate 
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where loy , is the thl sample at the tho output for the current angles, the derivative of 
o
kα with respect to 2,1

pqθ  is obtained as, 
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where the subscripts in :oR and ( )
:

2,1
opqθ∂∂R denote the tho row of the corresponding 

matrix. By the definition, the derivative of R with respect to an angle is 
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Thus, the overall update rule for the Givens angles summing the contributions from 
each output is 
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where η  is a small step size. 

5   Discussion on the Algorithm 

In the previous sections, we proposed an approximate numerical solution which re-
places the expectation operator over the maximum entropy by a sample mean over the 
data distribution due to the difficulties associated with solving for the Lagrange mul-
tipliers analytically. In this section, we provide how to choose the constraint functions 

(.)kf  in the formulation. Here we consider the moment constraints for both real and 

imaginary parts of the output loy , , namely 
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where o
ry  and o

iy  are the real and imaginary parts of tho output, kk vu ,  are the mo-

ment order. Our brief investigation on the effect of other constraint functions suggests 
that the simple moment constraint yields significantly better solutions. One motiva-
tion to use moment constraint is the asymptotic properties of the exponential pdf 
estimates in (8). 

Besides the desirable asymptotic convergence properties of the exponential family 
of density estimates, the moment constraint function gives simple gradient updates. 
Let ( ) ( ) ( )riiriirriririro xxjxxjxxjjyyy RRRRRR ++−=+×+=+= )( . Here 

rR and iR are the real and imaginary parts of the rotation matrix R. Then, we can 

find the derivative of (17) with respect to the Givens angle 2,1
pqθ  as 
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where the derivative of output with respect to angle is 
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Furthermore, in the computation of (18), we can express 2,1)( pqpq
pq θθ ∂∂R  as 
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Here 2,1/ pq
o
r θ∂∂R  and 2,1/ pq

o
i θ∂∂R  are the real and imaginary parts of ( )opq

2,1/ θ∂∂R . 
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Fig. 1. Average SIR (dB) obtained by complex Minimax ICA and FastICA versus sample size. 

6   Simulations 

In this section, we present a simple comparison of the proposed complex Minimax 
ICA algorithm and the popular complex FastICA method [16]. In this controlled 
environment, the signal-to-interference ratio (SIR) is used as the performance meas-
ure: 
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where O is the overall matrix after separation, i.e. O=RWH. This measure is the aver-
age ratio in decibels (dB) of the main signal power in the output channel to the total 
power of the interfering signals. Minimax ICA uses all complex moments up to order 
4 as constraints, thus it considers kurtosis information as FastICA does. 

For training set sample sizes (N) ranging from 100 to 500, a set of 100 Monte 
Carlo simulations are run for each sample size. In each run, N complex samples are 
generated artificially according to ( )jjjj irs φφ sincos += , where r1 is Gaussian, and 

r2 and the phases jφ  are uniform. In this setup, the sources have independent real and 

imaginary parts with equal variance. The 2x2 mixing matrix is also complex-valued 
whose real and imaginary parts of entries are uniformly random in [-1,1]. 

Fig. 1 shows the SIR for both methods. While Minimax ICA is always better than 
FastICA, the difference in performance increasingly becomes significant as the sam-
ple size is increased. On the other hand, the computational requirement of Minimax 
ICA is much larger than that of FastICA, as one can assess from the previous sec-
tions. 

7   Conclusions 

In this paper, we extended the Minimax ICA algorithm to complex-valued signals. 
This algorithm is based on a density estimate stemming from Jaynes’ maximum en-
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tropy principle. Thus, an approximate upper bound for the mutual information be-
tween the separated outputs is obtained from the samples and minimized through the 
optimization procedure. The density estimation stage utilizes integration by parts in a 
novel way to arrive at a set of linear equations that uniquely determine the Lagrange 
multipliers of the constrained maximum entropy density estimation problem. 

Numerical simulations conducted using artificial mixtures suggest that the pro-
posed complex Minimax ICA algorithm yields better separation performance com-
pared to complex FastICA at the cost of additional computational burden. 
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