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ABSTRACT is obtained by means of an iterative re-weighted least squares algo-

The support vector machine (SVM) has been recently proposed f(ﬂthm (IRWLS). For constant modulus signals, this solution pro-

blind equalization of constant modulus signals. In this paper we//des basically the same results as the methodiin [8] with a notably
extend this previous work in two directions: first, the high com- 2"V€' computational burden. Moreover, like CMA, the error func-

putational cost of the original procedure is significantly reducedion allows to extend the method to multilevel modulations. In this
case, a dual mode algorithm is proposed. Dual mode equalization

by transforming the original quadratic programming (QP) problem hni r mmonl d in communication systems workin
into an equivalent least squares problem. Secondly, the penal chniques are commonily used in communication systems working
ith multilevel signals. Practical blind algorithms for multilevel

term of the SVM is now a Godard-like error function; therefore, dulati ble 1 th f th tellation but th
the proposed procedure allows the equalization of multilevel sightodulation are able 1o open the €ye ot ne constetiation but they

nals. A dual mode algorithm is also proposed: once convergencistally exhibit a high residual error. In a dual mode scheme, once
is achieved, the Godard-like penalty term is switched to a radiu € eye is opened by the blind algorithm, the system switches to an-

directed-like error function, which reduces the final intersymbol in-Other algorithm, which is able to obtain a lower residual error under

terference (ISI) level. Simulation experiments show that the pro2 Sultable initial ISI level. The most common choices are decision
posed SVM equalization method performs better than cumulantdireCted equalization [9] and radius directed equalizaiion [10].
based methods: it requires a lower number of data samples tg_.JN€ Paperis organized as follows. In Secfipn 2, the blind equal-
achieve the same equalization level and convergence ratio ization problem is formulated and CMA and the super-exponential

' methods are outlined. The proposed algorithm is presented in Sec-

tion[3. Section B shows the performance of the method by means
1. INTRODUCTION of sclngme exper%ental results. Finally, Secfi¢n 5 includes some con-

In most digital communication systems the channel introduces including remarks.

tersymbol interference (I1SI), which distorts the original transmit-

ted sequence and can make it unrecoverable. In this case, chan- 2. PROBLEM FORMULATION

nel equalization is typically employed to reduce, or iCjeaIIy to COM-1pq ;5yal baseband representation of the blind equalization prob-
pletely remove, the ISI. When a reference sequence is not avallabl%m in a digital communication system is shown in . 1
blind equalization techniques are necessary. These methods rely on T

the knowledge about the probabilistic or statistical properties of the
transmitted signal$ [1] 2]. S“ h Xk W Yk
In this paper we will focus on algorithms working at symbol "
rate. In this case, two broad classes of algorithms can be identi- n
fied. On one hand, the so called on-line techniques, which are typ- K
ically based on the maximization/minimization of a cost function
by means of stochastic gradient descent (SGD) methods. The most
representative method of this class is the well known CMA algo- ) ) -
rithm [3,[4]. In the other hand, batch techniques collect a block of ~ The transmitted data is modeled as a sequence of i.i.d. symbols,
data and iteratively maximize/minimize a cost function, commonlySk, belonging to the alphabet of the corresponding modulation. This
based on cumulants. To this class of methods belongs the sup&eduence is transmitted through a linear time-invariant channel with
exponential algorithm, proposed by Shalvi and Weinsfelin [5]. impulse response coefficiertts. Considering a baud rate system,
Support Vector Machines (SVM) are state-of-the-art tools forthe output of the channel is given by
linear and nonlinear input-output knowledge discovery [6]. SVM's
have been successfully applied to linear and nonlinear supervised L1
equalization problems. Recently, this framework has been used Xie = Z) hnSk-—n =+ Nk,
to formulate the blind equalization of constant modulus signals n=
[I7,18] (see therein references to SVM-based equalization method
This method is implemented by means of an iterative re-weighte\t&v

quadratic programming (IRWQP) technique, which requires a high The blind equalizer will operate on the channel output to reduce

computational burden. the ISI introduced by the channel. In this paper a linear equalizer

_ Inthis paper we propose a new SVM-based method to solve thg; e implemented by means of an FIR filter of length. In this
blind equalization problem. The cost function incorporates a Gobase the equalizer output is given by
dard or CMA-like error function as the penalty term and the solution '

Figure 1: Block diagram for blind equalization.

hereLy, is the channel length ang is a zero-mean white Gaussian
oise sequence.
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wherew is the vector of filter coefficients to be adapted by the blindfollows:
equalization algorithm. The Godard algorithmis [3] adapt the equal-
izer to minimize the following cost function " 1 P N K dLe(u)
Lo(w) = Wl +C{ 3 Le) + =,
i=

(ui)? — (u)?
uk 2u}‘

Jo(w) = E [ ("~ Re)?].

1 1N
. . o =5lIwl?+5 Xiaala|2+CTE. )
The ratioRp contains the priori knowledge about the current mod- i=
ulation,
E[|s¢|%"] CTE represents constant terms that do not depensiypand the
= . 2 weightsa; are
P B[ @ weightsa
CMA is the Godard algorithm fop = 2. The proposed method C dL.(u 0, u}< <&
: Jonth . e(U)
introduces a penalty term inspired by the CMA cost function. a = K du | 2C(u'—¢) K>e- (6)
For comparison purposes we use the super-exponential method, i u u =

proposed by Shalvi and Weinste|d [5]. This cumulant-based algo- )
rithm maximizesKy|, the modulus of the kurtosis of the equalizer The functionalLp(w) is a quadratic approximation io»>(w)

output,yx, where the kurtosis is defined as in (3) that presents the same valug(w*) = Lp(w¥) and gradient
OwLp(wK) = OwLp(w¥) for w = wk. Therefore, we can define

2
Ky = E[le[*] —2 (E [\yklzb - ‘E M] ‘ ; p*¥ = w®— wk as a descending direction fop(w), wherews is
the least square solution {d (5), and we can use it to construct a line
subject toE[|yi|?] = E[|s/2]. search method [13], iewktl = vyk+_nkpk. The value ofn"_ca}n
be computed using a backtracking line seafch [13], in whiklis
3. MULTILEVEL SVM-BASED BLIND EQUALIZATION initially setto 1 and ifLp(wk*+1) > Lp(wk), it is iteratively reduced

until a strict decrease in the functional jf (3) is observed. To obtain
In this section we formulate two variants of the proposed methodihe solution td_p(w), its gradient is equated to zero
a blind algorithm and a radius directed algorithm. For multilevel
modulations, these two algorithms can be used in a dual mode N
equalization scheme: the blind algorithm is used until convergence g | {(w)=w+27F g <‘X,TW|2 _ Rz) xT wx* = 0.
is obtained; then, a switch to the radius directed algorithm will al- i; ! P
low to reduce the residual ISI.

) _ This is a nonlinear function o&. To circumvent this nonlinearity,
3.1 Blind algorithm the equalizer outpuy; is considered fixed, which leads to

Given a data block dfl symbols, the proposed algorithm minimizes

the following SVM-based cost function " N
i=

1, ., N
Le(w) = EHWH +Ci;|‘€(u')’ ®) This equation can be expressed in matrix notation
where [2X"DaDy 2 X +Ijw = 2R,X" D, Y, @)
Le(u) = 0, u<e
BV T R —2ue+€2, u>e whereX " = [x1,x2,---,xn], Da is a diagonal matrix with diago-

nal elements andD‘y‘a is another diagonal matrix with diagonal

is a e-insensitive quadratic loss function modified to guarantee aelements{y-|2 SuperindexX! denotes the hermitian operator
continuous derivative. Continuity of the derivative is necessary for e '

the numerical stability of the algorithm. To apply this cost function 311
to the problem of blind equalization, a suitable penalization term, ™"
u;, has to be selected. Here, we propose touise |g| with the The equalizer is initialized with a tap-centered scheme. This initial-
error termg being ization has experimentally demonstrated a good convergence be-
havior under a number of different kind of channels (see results
12 B e under random channels in Sectgn 4).

& =Wil"-Re =y ~Re. “) With respect to parametefs[gnd g, although further research
is necessary to determine their optimal values, simulations have
shown that the algorithm is not very sensitive to its choice. Typ-
C'!J(I:ally, values ofC = 10 ande = 0.01 produce suitable results under
wide range of channels and signal to noise ratios.
Finally, the IRWLS procedure is summarized in TgHle 1.

Implementation details

Ry is the Godard constarft](2) fgr= 2 and superindex denotes
the complex conjugate.

To optimize the proposed cost function an iterative re-weighte
least square (IRWLS) procedure is employed. This procedure has
been successfully applied to solve SVM’s [11] and it has recently
proven to converge to the SVM solutidn [12]. To obtain the IRWLS . . .
algorithm, a first order Taylor expansion lof (u) leads to the cost 3.2 Radius directed algorithm
function The radius directed algorithm is formulated by repladisgn the

blind algorithm by the radiuBy;, which is defined as follows

N
Lp(w) = 3wl +C (zlmur) 4 2

). R = min( I~ R

whereuf = || andel = |x] wK|?> — Ry is the error term after the Here, Ry are the different values d |2 in the underlying signal
k-th iteration. Then, a quadratic approximation is constructed asonstellation. For instance, for a 16QAM with level8, +1 in
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1. Initialization: initializew? with tap-centered strategy, obtain N —— Blind-SVM
yi by (). & by (4), calculatey, = |g| and computey from (). NN — — -SW-algorithm
Setk=0. -10 + N i
2. Computew by solving [7) and segk = 1. *
3. Setwkt = wk 4 nKwS —wX]. If Lp(w**1) < Lp(wX) go to 151
Step 5. Q
4. Setnk = pn* with 0 < p < 1 and go to Step 3. =
5. Recomputes, u; anda;, setk = k+ 1 and go to Step 2 untjl =-20 -
convergence.
25t = ]
Table 1: IRWLS pseudocode SNR=30 dB\
-30 I I 1 1
both the phase and quadrature compond®itss {2,10,18}. With 0 200 400 600 800 1000
this simple modification, the error term to be penalized is .
Data block size
6 = |Yi|2* Rui, (8) Figure 2: Mean ISl level after convergence (final ISI under -5 dB)
) ) ) vs. data block size for the proposed Blind-SVM algorithm and the
and the matrix system to obtain the solutiefi becomes SW-algorithm. Channéf;(z) and QPSK input.
[2XH DD}y 2 X + 1w =2X"D,DRY. 9) 100 —
I
Dg is a diagonal matrix with diagonal elemerRg. The corre- 590 b .
sponding IRWLS algorithm is the same one summarizedin Tdhle1 35 80 L — Blind-SVM |
with the following differences: @ — — -SW-algorithm
e Step 1: since this algorithm is used as the second step of a dual- § [ 7
mode algorithmw? is the value ofw provided by the blind 2 60 .
algorithm. S 50 L SNR=30dB ]
e Steps 1 and 5g is evaluated by[{8), instead ¢1| (4). 2 40
e Step 2:wS is obtained by solvind {9), instead ¢ (7). 8 i i
S 30 + SNR=10 dB ]
4. SIMULATION RESULTS g 20 L ]
In this section, simulation results for constant modulus signals and o 10 L i
multilevel signals are presented. As a figure of merit we use the ISI 0 1 1 1 1
defined as
0 50 100 150 200 250 300 350 400
6n|? — max, |6n|2 Data block size
IS1 = 10l0g 21

Figure 3: Percentage of convergence vs. data block size for the
proposed Blind-SVM algorithm and the SW-algorithm. Channel

where6 = h is the combined channel-equalizer impulse re-
W a P H1(z) and QPSK input.

sponse.

4.1 Constant modulus signals

In the first example, the proposed blind algorithm, labeled Blind-4-2 Multilevel signals
SVM in the following, is tested with a QPSK modulatios, & A 16-QAM modulation, withse = {{£3,+1} + j{#3,+1}}, will

{£1+ j}/v/2) and the following channel be used to test the performance of the proposed methods for multi-
level signals. In this second example, the proposed Blind-SVM and
07-z1 in/4 the dual mode algorithm, which starts with the blind algorithm and

Hi(2) = 1-0771 : after convergence is achieved switches to the proposed radius di-

rected SVM algorithm, are compared again with the SW-algorithm.
The proposed method is compared with the super-exponential algdhe dual mode algorithm will be labeled DM-SVM in the follow-
rithm proposed by Shalvi and Weinsteln [5], labeled SW-algorithming. 1000 Monte Carlo simulation with random channels of length
in the following. We used an equalizer of lendty = 17 taps, Lj =7 and a SNR=30 dB have been averaged. Adajn= 17,
with tap-centered initialization. Paramet&@s= 10 ande =0.01  C = 10 ande = 0.01 are used. Figq.]4 afdl 5 compare the mean
are selected. Signal to noise ratios (SNR) of 30 dB and 10 dB areesidual ISI and the percentage of convergence of these methods. It
considered. Figd.]2 ad 3 show the ISI and the probability of conis necessary to remark that the DM-SVM algorithm has the same
vergence for different data block sizes, respectively. For each dafgercentage of convergence as the Blind-SVM algorithm because
block size, both algorithms were tested in 200 Monte Carlo trials. this is the initial stage, responsible of the convergence, of the DM-

The Blind-SVM method provides better results than the SW-SVM algorithm.

algorithm, specially for short data blocks. These results are almost Again, the proposed methods outperform the SW-algorithm.
equal to the results provided by the IRWQP algorithm presentedhe SVM-based methods exhibit a higher percentage of conver-
in [8] (they are not included in the figures because they basicallgence, obtaining good convergence rates even for very short data
overlap the Blind-SVM results). In this case, the proposed methodylock sizes. Moreover, the residual ISl is lower than the one ob-
which solves the SVM by a IRWLS algorithm instead of a IRWQP tained by the SW-algorithm. As expected, the DM-SVM method
algorithm, has the advantage of requiring a notably lower computaproduces a better final solution than the Blind-SVM algorithm, as
tional burden since the original quadratic programming (QP) probthe radius directed algorithm achieves a better final ISI under a suit-
lem is now formulated as a least squares problem. able initialization.
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\ — Blind-SVM
7 L ~ — — -SW-algorithm|

0 200 400 600 800 1000
Data block size

Figure 4: Mean ISl level after convergence (final ISI under -5 dB)
vs. data block size for the proposed Blind-SVM and DM-SVM

0 5 10 15 20 25 30
IRWLS lIterations

Figure 6: ISl vs. number of iterations of the IRWLS algorithm for
the Blind-SVM method using a data block sike= 750. Channel
H1(z), 16QAM input and SNR=30 dB.

algorithms and the SW-algorithm. 16-QAM input and 1000 random

channels with a SNR=30 dB.

100 . . . T
90 | — Blind-SVM

80 | — — -SW-algorithm
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Figure 5: Percentage of convergence vs. data block size for the pro-
posed Blind-SVM) algorithm (and consequently for the DM-SVM
algorithm) and the SW-algorithm. 16QAM input and 1000 random

channels with a SNR=30 dB.

Finally, to illustrate the convergence of the IRWLS algorithm,

and they reach a lower residual intersymbol interference.
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