
     
  

 

 Abstract—Brain machine interface (BMI) design can be 
achieved by training linear and nonlinear models with 
simultaneously recorded cortical neural activity and behavior 
(typically the hand position of a primate). We propose the use 
of optimized BMI models for analyzing neural activity to assess 
the role of individual neurons and cortical areas in generating 
the performed movement. Two models (linear-feedforward and 
nonlinear-feedback) are trained to predict the hand position of 
a primate from neural recordings in a reaching task. 
Qualitative and quantitative investigation of the effect of 
neurons and their corresponding cortical areas through both 
models yields conclusions consistent with neurophysiologic 
knowledge. In addition, this analysis revealed the role of these 
areas and the importance of the neurons in terms of BMI 
design. 
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I.  INTRODUCTION 
 

 In a landmark article, Nicolelis and Wessberg showed 
that linear and nonlinear models can approximate the hand 
trajectory of a primate performing a reaching task using only 
the firing patterns of an ensemble of cortical neurons [2]. 
While they and others showed the feasibility of using 
optimal input-output models for Brain Machine Interfaces 
(BMIs), the primary focus was to find the best model for 
accurate trajectory reconstructions [2-9]. For a reaching task 
not all models perform equally due to differences in ability 
to exploit trends in neural activity [10-13].  
  Here, we shift the focus of BMI studies to investigating 
the interpretations we can make about neural activity from 
these trained models. All of the proposed models have the 
ability to encode and store the fundamental timing 
relationships between neural inputs and hand trajectory in 
the model parameters [1, 14-16]. A natural next step in BMI 
development is to hypothesize that these models can be 
studied in a principled way to extract neurophysiologic 
trends in the neural recordings. By analyzing the model 
parameters in a signal-processing context, we can ascertain 
importance to individual neurons and extract relationships 
between cortical regions and the desired behavior. Note that 
this approach to neuronal analysis contrasts with traditional 

neuroscience methods that implement data-driven reasoning 
under extremely well controlled experimental paradigms. 
However, we feel that this methodology seems ill prepared 
to attack the study of interactions between large populations 
of neurons used in BMI experiments. Consequently, we 
propose the use of signal processing constructs to deduce 
interpretations of neural activity.  
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 The success of neural analysis through models depends 
on having well trained models that encode the mapping from 
neural activity to hand kinematics. We must be aware that 
the model could bias the interpretation due to abstract level 
of modeling, and difficulties in determining a reasonable fit, 
model order, and topology. For these reasons, the validity of 
this approach must be tested before continuing this type of 
analysis. By investigating how the choice of the model 
topology affects the interpretation of neural activity, we can 
test and validate the aptness of this approach. 
 With these considerations, we compare interpretations 
of neural activity through two radically different models: 
linear feedforward Wiener filter (WF) and nonlinear 
dynamic recurrent multilayer perceptron (RMLP). The WF 
is extensively used in the BMI literature [2, 7]and the RMLP 
produced the best results for a reaching task thus far [10-13]. 
 In this paper we train both models to predict the hand 
trajectory of a behaving primate using various combinations 
of cortical activity from the primary motor, premotor and 
posterior parietal cortices. This investigation will show how 
each model identifies which cortical regions are involved 
with the production of the hand trajectory. Secondly we will 
perform a sensitivity analysis on each model to rank the 
neurons for importance and determine if this importance 
ranking is influenced by the model selection. 
  
 

II.  METHODOLOGY 
 
A. Model Topologies 
 

Figs. 1 and 2 show the topology of WF and RMLP that 
are used in our studies. For the WF, the output is a weighted 
linear combination of neuronal inputs x (10 most recent 
values) given by (1) [2]. The optimal MSE solution is given 
by (2), where d is the hand trajectory1.  
 )()( tt Wxy =  (1) 

1 For ill-conditioned matrices, the inversion might assign large weights to 
neurons with few firing counts. To prevent this, we implement the ridge-
regression regularization technique [1] to improve the condition number. 
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The RMLP uses only the instantaneous neural activity 
to compute each output. The hidden layer consists of 5 tanh 
processing elements (PEs) that are fully connected to each 
other with a feedback matrix. The state vector of the hidden 
layer in (3) is a nonlinear function of the linear combination 
of input and previous state.  The feedback of the state 
creates memory and allows representations on multiple 
timescales. The output layer has 3 linear PEs (for X, Y, Z 
coordinates) and produces the output as in (4). Each hidden 
PE is a nonlinear adaptive basis for the output that projects 
the high dimensional neuronal data. These projections are 
then linearly combined to form the outputs (position 
predictions) of the RMLP. Optimal weights are determined 
by minimizing MSE using BPTT [14]. 
 ))1()(()( 1111 byWxWy +−+= ttft f  (3) 
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B. Cortical Contributions 
 

We are interested in the cortical regions that contribute 
to the triad of movements defined in Fig. 3. Each reaching 
movement is segmented to three reaches: rest/food, 
food/mouth, and mouth/rest. By training both WF and 
RMLP using combinations of neurons from different 
cortical areas, and observing the network outputs, we can 
build a set of constructs to compare with established 
neurophysiologic principles. Both models are trained using 
multichannel neuronal firing times from up to 104 cells and 
hand trajectories that were collected synchronously from 
owl monkeys (Aotus trivirgatus). The firings of neurons are 
binned in 100ms non-overlapping windows. The neural 
recordings are collected by 64 electrodes implanted in four 
cortical regions (posterior parietal (PP) - Area 1, primary 
motor (M1) - Area 2, Area 4, and premotor dorsal (PMd) - 
Area 3) each receiving 16 electrodes [17].  

Using approximately 33mins of neural activity from all 
combinations of the base set of cortical regions, we trained 
15 WFs and RMLPs. After training, the weights of each 
topology were fixed and 5mins of novel data were presented 
to produce hand position predictions. For this short period of 
testing, there is no noticeable degradation in any of the 
models. This procedure was repeated on two separate 
datasets from the same primate that were collected on 
consecutive days, as well as a third dataset from a second 
primate. The results presented here are only for the first 
recording session and primate, however, the results are 
consistent among all trials. 
 The X, Y, Z network outputs (bold) and the actual hand 
coordinates for one sample movement are plotted in Figs. 4-
5 for each network. Even though the RMLP outperforms the 
WF in capturing the trajectory peaks (subplots Area 1234), 
we observe that the trends of both topologies are consistent. 
For example in both topologies, Area 1 captured rest/food, 
but showed a poor fit in food/mouth. Area 2 does not 
display any correlation to this desired trajectory even though 
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Figure 1. Wiener filter topology. Figure 2. Fully connected, state RMLP.
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igure 3. One movement segmented into rest/food, food/mouth, and 
outh/rest motions. 
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igure 4. Wiener filter - Testing output X, Y, and Z trajectories (bold) for 
ne desired movement (light) from fifteen Wiener filters trained with 
euronal firing counts from all combinations of four cortical areas. 
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igure 5. RMLP - Testing output X, Y, and Z trajectories (bold) for one 
esired movement (light) from fifteen RMLPs trained with neuronal firing 
ounts from all combinations of four cortical areas 
 



     
  

 

neuronal firing in this region is nonzero. Sharp changes in 
the model output appear in movement transitions for the 
network trained with Area 3. Area 4 accurately captures the 
food/mouth and mouth/rest regions, but misses the 
beginning of movement. Both the WF and RMLP display 
the following trends in the hand trajectory reconstruction: 
• Area 1 is necessary to capture rest/food. 
• Area 2 is not crucial in trajectory reconstruction. 
• Area 3 relates to sharp transitions in trajectory.  
• Area 4 is necessary to capture food/mouth. 
• Combining multiple areas (e.g., 1, 3, 4) reduce magnitude 

of fluctuations in trajectory predictions. 
 
C. Sensitivity Analysis – Selecting Important Neurons 
 

With the trained weights of both WF and RMLP 
topologies, we have a tool to identify the neurons that affect 
the output most. A sensitivity analysis, using the Jacobian of 
the output vector with respect to the input vector, tells how 
each neuron’s spike counts affect the output given the data 
of the training set. The procedure for deriving the sensitivity 
for a feedforward topology is an application of the chain rule 
[18]. For the case of the WF, differentiating the output with 
respect to the input yields ∂y(t)/∂x(t)=W. Hence, a neuron’s 
importance is determined by its corresponding weight value. 
In this paper we consider the absolute values of the weights 

averaged over the three output dimensions and the ten 
delays per neuron. With this procedure a single value 
indicating the importance of the neuron is obtained. 
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Figure 6. Wiener filter - Neuronal sensitivities sorted from minimum to 
maximum for a movement. The ten highest sensitivities are labeled with 
the corresponding neuron. 

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
en

si
tiv

ity

RMLP Neuron Ranking

Neurons

93 

19 
29 

5 
4 

84 
7

26 
45 

104 

 
Figure 7. RMLP - Neuronal sensitivities sorted from minimum to 
maximum for a movement. The ten highest sensitivities are labeled with 
the corresponding neuron. 

Since our RMLP model displays dependencies over 
time that result from feedback in the hidden layer, we must 
modify the procedure presented in [18]. Starting at each 
time t we compute the sensitivities to instantaneous inputs as 
well as previous inputs. In the RMLP we apply the chain 
rule as shown in (9)-(12), where Dt is the derivative of the 
hidden layer nonlinearity evaluated at the operating point 
shown in (10) using the input sample at time t. The 
dependencies to previous inputs introduced by the feedback 
are handled similar to the transition from (9) to (11) to 
obtain the general form in (12). Experimentally we 
determined that the effect of an input decays to zero over a 
window of 20 samples. At each time t the absolute-
sensitivity of the output with respect to the inputs is 
represented as the averages of the absolute values of the 
sensitivities over the 20-sample window and the three output 
coordinates. Again, a single importance value for each 
neuron is obtained through the RMLP. 

For both the WF and the RMLP, the sorted neuronal 
sensitivities for the ensemble of neurons plotted in Figs. 6 
and 7 show a model-independent trend in the sensitivity 
profiles. An initially sharp decrease from maximum 
indicates that only a few neurons are required for outlining 
the movements in both topologies. Of the 104 neurons, 7 of 
the 10 highest-ranking neurons are common for the WF and 
RMLP. The most important neurons are primarily 
distributed over cortical areas 1 and 4. This finding that the 
output is less sensitive to the neurons in regions 2 and 3 is in 
agreement with the results in Section II.B. 
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V.  CONCLUSION 
 
We investigated the possibility of analyzing neural data 

from a BMI design perspective by considering the relative 
contributions of individual cortical regions and single 
neurons to the construction of hand trajectories through 
optimally trained models. It is encouraging that the 
qualitative interpretations of neural activity is independent 
of the model topology, even with two distinct topologies 
(linear-feedforward vs nonlinear-feedback). This builds 
confidence in our conclusions about neurophysiology drawn 
from signal processing techniques. The interpretations 



     
  

 

obtained by the model analyses corroborate the view of 
broad tuning of the motor cortex, that is, the spatio-temporal 
encoding of the motor information is such that only a minute 
population of 100+ neurons is enough to enable a relatively 
precise mapping spike counts to hand movements. But the 
broad tuning seems to be limited to local organization. It 
seems that different cortical areas are required to track the 
different parts of the reaching task. The PP was controlling 
the reach to the food and the M1 was controlling the reach 
from food to mouth. To a lesser extent, the PMd was 
controlling the transitions in the movement. This indicates 
that the electrodes should be placed strategically throughout 
the motor cortex to capture vital information. If electrodes 
are not placed in a cortical region important for a part of the 
movement, the trajectory cannot be reconstructed well.  

Moreover, only a handful of neurons in these respective 
cortical areas seem to be highly correlated to the hand 
trajectory. We have experimentally verified this observation 
by computing the sensitivities through both WF and RMLP 
topologies. Using these two methods of analysis, we found 7 
of the 10 most important neurons for each model are 
common. Hence, one may be lead to think that BMIs can be 
constructed from just a few electrodes, but our data shows 
otherwise. Although, in 100+ neurons only 10 are 
indispensable to produce good mappings, we can only find 
these neurons after the analysis is done through a model. 
This means that finding good neurons for a large repertoire 
of tasks during surgery will be virtually impossible. So at 
this point the best strategy seems to sample the cortex with 
as many neurons as technically feasible. 

This cortical analysis motivates appropriate questions 
about the roles of cortical regions in voluntary movements 
so that we can compare our observations with experimental 
neuroscience. Using well controlled experiments, the 
posterior parietal cortex has been associated with motor 
imagery [19], visual/tactile manipulation of objects [20], and 
spatial coordinate transformations [21].  In our alternative 
analysis approach, we repeatedly identified the PP as the 
active area during the rest/food reach, which is a task that 
may involve all of the mentioned PP associations. This 
could be an additional example confirming the role of PP. 

Our last comment is on the scalability of this analysis 
approach. So far, we only utilized data from a reaching task. 
Therefore, it remains to be seen how the important neurons 
change from task to task. Due to the different importance of 
areas in the various segments of the reaching task, we 
anticipate that important neurons will vary for different 
movements. If this is the case, two problems arise. First, a 
given sampling of neurons may provide a limited repertoire 
of reconstructable movements. Second, a network trained 
for all possible movements may perform worse than one 
trained just for one movement. This is particularly the case 
for linear mappers, but it will affect to a certain extent the 
nonlinear models; how much remains to be seen. 
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