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ABSTRACT 

 
Many algorithms based on information theoretic measures 
and/or temporal statistics of the signals have been 
proposed for ICA in the literature. There have also been 
analytical solutions suggested based on predictive 
modeling of the signals. In this paper, we show that 
finding an analytical solution for the ICA problem 
through solving a system of nonlinear equations is 
possible. We demonstrate that this solution is robust to 
decreasing sample size and measurement SNR. 
Nevertheless, finding the root of the nonlinear function 
proves to be a challenge. Besides the analytical solution 
approach, we try finding the solution using a least squares 
approach with the derived analytical equations. Monte 
Carlo simulations using the least squares approach are 
performed to investigate the effect of sample size and 
measurement noise on the performance. 

 

1. INTRODUCTION 
 
Independent components analysis (ICA) has become a 
useful tool in engineering and basic scientific research. 
There are many successful algorithms in the literature that 
find the independent components of a signal set. These 
algorithms mostly exploit the independence assumption 
for the sources through information theoretic measures, 
higher order statistics of the signals, and the temporal 
structures of the signals through second order statistical 
measures like cross-correlation at multiple lags. Among 
the information theoretic approaches we can list Bell and 
Sejnowski’s Infomax [1], Comon’s minimum mutual 
information method [2], Yang and Amari’s information 
theoretic approaches [3], and Mermaid [4] by Hild et al. 
On the higher order statistics front, JADE by Cardoso [5], 
Pham’s decorrelation-of-outputs approach [6], 
Hyvarinen’s celebrated FastICA [7], Karhunen and Oja’s 
nonlinear PCA approaches [8] are among the significant 
innovations. For nonstationary sources, the time-varying 
cross-correlation of the signal can be exploited [9,10,11]. 
An original approach, first proposed by Zibulevsky, is to 
determine a transformation such that the representations 

of the sources in the transform space become sparse [12]. 
Then, the determination of the mixing matrix becomes 
extremely easy as the observation vectors start lining up 
along the matrix columns with increasing sparsity factor 
[13]. None of these approaches, however, provide an 
analytical expression for the mixing matrix or for its 
inverse, without resorting to some indirect criterion of 
optimality. There have even been approaches that utilize 
the predictive modeling of the signals to determine an 
analytical solution for ICA [14]. Nevertheless, a generic 
approach that targets the determination of the mixing 
matrix without restrictive assumptions has not yet been 
proposed.  

It turns out that the answer to this problem lies in the 
simplest of all approaches, which is the subject of this 
paper. We called this approach brute-force ICA, because it 
relies heavily on forcing out a system of equations from 
the data by which the unknowns can be determined 
numerically, and perhaps analytically. In fact, while we 
were working on the formulation of the presented 
methodology, a paper has appeared that exploited similar 
ideas to find an analytical solution for the blind 
equalization problem [15]. In this paper, however, we will 
not focus on the analytical solution. We will rather 
concentrate on the change in the performance of the 
solution obtained through this brute-force approach when 
the number of training samples and the measurement 
signal-to-noise-ratio (SNR) are varied. 
 

2. PROBLEM DESCRIPTION AND SOLUTION 
 
Suppose that there exist n mutually independent signals 
(in the source vector s) that are mixed by an unknown 
matrix (called the mixing matrix) H to form the 
observation vector x according to x =Hs. The ijth entry of 
the mixing matrix is denoted by hij, and it is the scale 
factor that multiplies source sj in observation xi. For 
simplicity, we consider the square mixture case, where the 
number of observations is also n. In ICA, the task is to 
determine the independent source signals or the mixing 
matrix having only the observed vector samples x(k), 
where k is the sample (time) index. Since neither H nor 
the source signals are available, the solution requires some 
assumptions regarding the statistics of the source signals. 



Here, we will resort to the commonly used independence 
assumption. In addition, we will assume without loss of 
generality that the sources are zero-mean and unit-
variance. Subtracting the mean of the observation vector 
from the observed samples satisfies the zero-mean 
assumption. On the other hand, the unit-variance 
assumption is acceptable since the source amplitude scale 
factors cannot be distinguished from the mixing matrix 
entry scale factors. Formally, these two assumptions are 
expressed as  and . In addition, due to 
the source independence assumptions, we obtain the 
following equalities for integer α. 
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In the last identity of (1),  is either 0 (for ][ α
iE s 1=α ), 1 

(for 2=α ), or unknown (for 2>α ). These two 
identities will prove extremely useful in determining the 
system of equations for which we aim. Now consider the 
second order joint moments of the observed signals.  
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Similarly, we can derive expressions for the fourth order 
joint moments of the observed signals. Using the 
simplifications pointed out in (1), these equations become 
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Notice in (3) that the fourth order moments of the 
independent sources appear as additional unknowns in the 
equations. With these n new unknowns and the original n2 
H entries, the total number of unknowns when the second 
and fourth order joint moments of the observed signals are 
considered becomes n2+n. In order to determine these 
unknowns, we have extracted n+n(n-1)/2 equations from 
the second order moments and n+n(n-1)+n(n-1)/2 
equations from the fourth order moments, which amount 
to 2n2. Clearly, we are interested in the integer values of 

. Therefore, for these cases of interest we always 
have more equations than unknowns when the second and 
fourth order joint moments are utilized (2n2> n2+n). 

2≥n

 In the above discussion, we have not considered the 
third order joint moments, because doing so would 
introduce equations that contained the third order 
moments of the independent sources, i.e., . For 
symmetric source distributions this moment will become 
zero, which reduces the number of independent equations. 
Therefore, using these moments is not recommended.  

][ 3
iE s

 Now that we have determined the expressions for the 
joint moments of the observations in terms of the mixing 
matrix entries and the fourth order moments of the 
sources, the problem reduces to finding the root of a 
system of nonlinear equations of the form f(X)=C, where 
X is the vector of unknowns consisting of the entries hij 
and the source moments . The constant vector C, 
on the other hand, consists of the sample estimates of the 
second and fourth order moments of the observations, i.e., 

, 

][ 4
iE s

4,][ βα
jiE xx 3,2,1,0, =βα  and 4=+ βα . In practice, it 

is recommended that all 2n2 equations be utilized since the 
solution found by an overdetermined system of equations 
is expected to have smaller finite-sample variance and 
more robustness to noise compared to any solution that 
will be obtained using a subset (with size n2+n or more) of 
these equations. The importance of the equations could 
also be weighted based on the estimated variance of the 
entries of C due to the finite sample size. We will not 
however, be concerned with these issues in this paper. 
 Clearly, the performance of the solution obtained 
using this approach will be independent of the sign of the 
kurtosis of the source signals. In fact, since the fourth 
order moments of the sources are among the unknowns to 
be determined, the solution of the algorithm can be used 
to determine the values of the kurtosis of the sources.  
 It is possible to write out the equations for the higher 
order joint moments of the observed signals, thus get 
additional or alternative equations. However, odd 
moments are not desirable due to the same reason stated 
earlier for the third order moments. Higher order even 
moments, on the other hand, are less desirable than the 
second and fourth order moments, simply because as the 
moment order increases, sample estimates become more 



vulnerable to outliers and require more samples for 
accurate estimation. 
 

3. THE SIMPLEST SPECIAL CASE 
 
In order to demonstrate the level of complexity involved, 
we will explicitly present the equations for a 2x2 mixture 
situation in this section. When n=2, the total number of 
equations given by (2) and (3) is eight. These are given in 
(4). Since these eight equations in six unknowns do not 
conflict with each other, we can select an arbitrary subset 
of six equations.  
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Consider the selection of the first five equations and 
the last equation. Using the fourth and fifth identities of 
(4), it is possible to determine  and  in terms 
of the mixing matrix entries. In addition, using the first 
two identities, we can express the diagonal entries of the 
matrix in terms of the off-diagonal entries. After all the 
substitutions and taking some combinations of different 
powers of the third and eighth identities, we finally obtain 
the following two equations that need to be solved 
simultaneously for the diagonal entries of the mixing 
matrix. 
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In (5), the constants ci denote the expectations on the left 
hand side of (4) and are determined by the data. The first 
equation in (5) is quadratic in , if  is considered to 

be a constant. From this, we obtain two solutions for  

in terms of  corresponding to different permutations 

of the sources. Substituting one of these solutions for  
in the second identity in (5) reveals a complicated 
equation for . Although we attempted to solve this 
equation analytically, we were unsuccessful. However, it 
is possible to search for this root to determine . Then, 

 is determined by the first identity in (5). Moreover, 
using the first two identities in (4), it is possible to 
calculate  and . The actual matrix entries can then 
be determined by taking the square root of all these 
values. However, care must be taken in selecting the signs 
of these square roots. These signs must be consistent with 
all (or only the selected six) equations in (4). To do this, 
one can arbitrarily choose the signs of the diagonal 
elements of the solution. The signs of the off-diagonal 
entries can then be determined using, for example, the 
third identity in (4), i.e. the c3 equation. 
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4. LEAST-SQUARES APPROACH 

 
 In the noisy finite-sample case, the solution obtained 
by simultaneously solving any subset of the equations in 
(4) (in the general case (2) and (3)) might result in 
suboptimal mixing matrix estimates in the least square 
sense. In order to address this issue, it is possible to solve 
for the matrix entries, as well as the source fourth order 
moments, by minimizing the following least squares 
criterion. 
  (6) ))(())(()( cXfGcXfX −−= TJ

]

where c is a vector consisting of the observation joint 
moments appearing on the left side of (4), X is the vector 
of unknown parameters consisting of the mixing matrix 
entries and the source fourth order moments, f(X) is the 
nonlinear functions appearing on the right hand side of 
(4), and finally G is a positive definite weighting matrix 
that could be used to weight the importance of each 
equation in the solution. In order to be strictly consistent 
with the least squares theory, this weighting matrix could 
be selected as a diagonal matrix consistent with the finite-
sample estimation variances of the entries of c. On the 
other hand, computing these estimation variances is not an 
easy task, therefore, one might resort to the simple choice 
of an identity weighting matrix, i.e. G=I.  
 The minimization can be carried out using any 
standard optimization algorithm. For example, if steepest 
descent is utilized, the update algorithm for X becomes 
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Since the performance surface given in (6) is highly 
nonlinear, there will be local minima that might trap the 
algorithm. In order to reach one of the global optima 
(there are multiple global optima corresponding to 
different permutations and signs of the separated sources), 
the solution offered by (5) could be used as an initial 
estimate. The least squares procedure then refines the 
mixing matrix estimate to find the MSE-optimal solution. 
 

5. SIMULATION RESULTS 
 
In order to study the performance of the brute-force ICA 
solution, we have designed two Monte Carlo experiments. 
In one of these experiments, we evaluate the performance 
of the algorithm versus the number of available data 

samples. In the second experiment, we investigate the 
robustness of the solution to measurement noise by 
varying the SNR of the observed signals. For the 
simulations, we use the 2x2 case. For every Monte Carlo 
run, each entry of the mixing matrix is selected randomly 
from a uniform distribution in [-1,1]. As the performance 
measure, we utilize the signal-to-interference ratio (SIR) 
defined below. Denoting the actual mixing matrix with H 
and the inverse of the estimated mixing matrix with , 
the overall mixing matrix after separation becomes 

. Letting qi denote the ith row of the overall 
matrix Q, the SIR (dB) is defined as 

1ˆ −H

HHQ 1ˆ −=

Figure 1. SIR (dB) histograms of 50 Monte Carlo
simulations presented from top to bottom for each of the
sample sizes 102, 103, 104, 105, 106. 
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 For each of the sample sizes 102, 103, 104, 105, and 
106, we perform 50 Monte Carlo simulations using zero-
mean, unit-variance sources and starting from randomly 
selected matrix estimates. The two source distributions 
were selected to be uniform and Gaussian. However, 
notice that the formalism presented above does not 
impose any restrictions on the source distributions other 
than independence, nor does its performance critically 
depend on these distributions.  

Figure 2. SIR (dB) histograms of 50 Monte Carlo
simulations presented from top to bottom for each of the
SNR levels 0dB, 10dB, 20dB, 30dB. 

 The results of the first set of Monte Carlo simulations 
are presented in Fig. 1. For each sample size, the 
histogram of the final SIR values is shown in a subplot. 
The subplots are ordered from top to bottom for ascending 
sample size. We clearly observe the expected increase in 
performance as the number of samples increase from one 
hundred to one million. 
 In the second set of Monte Carlo simulations, we vary 
the average SNR at the observed signals from 0dB to 
30dB in steps of 10dB. Similarly, we perform 50 Monte 
Carlo simulations using randomly selected matrix 
estimates. The sample size is kept fixed at 104 for all runs. 
Once again, the source distributions are uniform and 
Gaussian. The SIR measure is not modified to account for 
the noise in the separated signals, since neither the 
algorithm nor the demixing structure is tuned to reduce 
noise. Nevertheless, the current measure gives an idea of 
how much interference is coming from the unwanted 
source signals in each output channel.  
 The results of these Monte Carlo simulations are 
presented in Fig. 2. For each SNR level, the histogram of 
the final SIR values is shown in a subplot. Again, the 
subplots are ordered from top to bottom for ascending 
SNR. As expected, we observe an increase in performance 
as the noise power drops from being equal to the signal 
power to values negligible compared to the signal power. 
 In both sets of simulations, the steepest descent 
algorithm sometimes resulted in low-quality solutions 
exhibiting SIR levels less than or around 10dB. These 



separation levels correspond to local minima, therefore 
they represent suboptimal solutions. The problem of local 
minima could be avoided by starting adaptation using a 
standard ICA algorithm. After convergence of the 
standard algorithm, the solution could be used as the 
initial condition for the proposed algorithm in order to 
fine-tune the matrix estimate.  
 In order to demonstrate this, we present the average 
performance of Fast ICA [7], a benchmark algorithm, in 
the same experimental setup (with a 2x2 mixture using 
one uniform and one Gaussian distributed source). Fast 
ICA is known to be very successful in the described 
experimental setting. For each of 100, 1000, and 10000 
sample sizes, we have performed 50 Monte Carlo 
simulations with both of these algorithms. The results of 
brute-force ICA for the same situation were already 
presented in Fig. 1 in the form of histograms. The average 
SIR values obtained by the solutions given by these two 
algorithms for the three training data sizes are listed in 
Table 1. Clearly, the presented brute-force ICA approach 
is able to achieve a much better separation solution with 
the given data. Thus, it is possible, for example, to use 
Fast ICA to obtain a sufficiently accurate initial condition 
for brute-force ICA. The latter approach can then be 
implemented using the least-squares methodology 
described above to obtain a more accurate solution. 
 

6. CONCLUSIONS 
 
In the literature, numerous ICA algorithms are proposed, 
yet the simplest approach (extracting the equations for the 
solution from the topology using a brute-force approach 
on the independence assumption) had not been tried. In 
this paper, we aimed to demonstrate that it is possible to 
determine a nonlinear system of equations from which the 
mixing matrix in the ICA problem can be determined. In 
this formulation, the propagation of second and fourth 
order moments through the mixing matrix are exploited. 
As a consequence, the fourth order moments of the source 
signals appeared in these equations as additional 
unknowns. This way, the determination of a successful 
solution has been made independent of the sign of the 
kurtosis of the source signals.  
 We have attempted to find the analytical solution for 
the simplest 2x2 situation. We were able to deduce a 
single nonlinear equation in only one variable (one of the 

diagonal entries of the mixing matrix). However, due to 
the complexity of this final equation, we could not 
determine the analytical root, which would yield the 
expression for this matrix entry. Nevertheless, in 
computer experiments whose results were not presented in 
this paper, single dimensional numerical zero-finding 
methods (the standard fzero function of Matlab®) were 
able to determine this root very accurately. Once this 
value is determined, the other matrix entries and the 
source fourth order moments could be solved analytically 
using the presented system of equations. 

Mean SIR  N = 102  N = 103 N = 104 
Fast ICA 16.7 24.2 30.6 
Brute-force 26.9 33.8 38.4 

 

Table 1. Performance of Fast ICA and the presented brute-
force ICA approach for the 2x2 case with uniform and 
Gaussian sources; mean SIR (dB) over 50 Monte Carlo 
simulations is used as the figure of merit. 

 For general practical purposes, the analytical solution 
might not be feasible due to increasing complexity with 
data dimension. In those situations, a least squares 
approach can be employed. In this paper, we have 
presented the basics of such a least squares approach and 
we have presented Monte Carlo simulation results for this 
approach. In these simulations, we have studied the effect 
of sample size and measurement noise level on the 
performance of the algorithm. The results showed that the 
proposed criterion is able to yield high accuracy 
separation results for sample sizes as low as 100.  
 As a future line of research, we will investigate the 
system of equations that will arise from utilizing the time-
delayed correlations of the observed signals. These might 
lead to simpler equations, thus to an analytical expression 
for the ICA solution. 
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