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ABSTRACT

This paper presents a new blind equalization technique
for multilevel modulations. The proposed approach consists
of fitting the probability density function (pdf) of the corre-
sponding modulation at a set of specific points. The sym-
bols of the modulation, along with the requirement of unity
gain, determine these sampling points. The underlying pdf
at the equalizer output is estimated by means of the Parzen
window method. A soft transition between blind and deci-
sion directed equalization is possible by using an adaptive
strategy for the kernel size of the Parzen window method.
The method can be implemented using a stochastic gradient
descent approach, which facilitates an on-line implementa-
tion. The proposed method has been compared with CMA
and Benveniste-Goursat methods in QAM modulations.

1. INTRODUCTION

Channel equalization is one of the most common and suc-
cessful applications of adaptive filters in digital communi-
cation systems. When the transmitter sends a training se-
quence, the filter coefficients can be easily adapted using
the LMS algorithm. However, in many digital communica-
tion systems, the transmission of a training sequence is not
possible or it is very costly. In these cases, blind equaliza-
tion algorithms, which do not need a reference sequence,
are necessary.

There exist a number of different blind algorithms [1, 2].
In communication systems, the Constant Modulus Algo-
rithm (CMA) [3] is the most commonly employed algo-
rithm. It belongs to the family of Godard algorithms [4].
One of its more remarkable features is its simplicity. Its
main drawback is that it usually requires a high number of
data symbols to achieve convergence.

Several attempts have been made to improve the conver-
gence speed of conventional blind techniques. For instance,
Renyi’s entropy has been introduced as a cost function for
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blind equalization [5]. This approach uses an efficient non-
parametric estimator of this entropy measurement based on
Parzen window method to estimate the underlying pdf [6].
Although this method provides excellent results for some
channels, it fails to equalize other ones. In addition, it does
not work for multilevel modulations.

An interesting alternative consists in trying to force the
probability density at the output of the equalizer to match
the known constellation pdf. The well known Kullback-
Leibler divergence between densities has been employed as
a cost function for linear [7] and nonlinear (neural networks
based) equalizers [8]. This method has been tested in binary
PAM modulations. A new method based on the quadratic
distance between pdf’s has been proposed in [9]. It has the
advantage of being much simpler than [7], facilitating the
on-line implementation. However, it was designed only for
constant modulus algorithms (a simple Gaussian model is
used for the target pdf to be fitted).

In this paper, we propose a new blind algorithm that
aims at forcing the probability density of the equalizer out-
put at several sampling points. It admits a stochastic gradient-
based implementation, which is similar in complexity to
CMA. Therefore, it can be easily implemented in on-line
applications. Moreover, it allows a soft switch between
blind and decision directed equalization, unlike CMA-based
systems. The Benveniste-Goursat algorithm [10], which is
used for instance in digital TV systems [11], implements a
similar soft transition. The proposed method has been suc-
cessfully tested in quadrature amplitude modulations (QAM).

2. BLIND EQUALIZATION FORMULATION

In a communication system framework, the blind equaliza-
tion problem can be formulated as follows: a sequence{sk}
of i.i.d. complex symbols belonging to the constellation of
any digital modulation is sent through a channel. Usually
the channel is described by means of its discrete time com-
plex coefficientshk (assuming a FIR channel). Therefore,



the channel output is obtained by

xk =
Lh−1∑
n=0

hnsk−n + ek, (1)

where the noise sequenceek is typically modeled by a zero-
mean white gaussian noise process.

In this approach we have only considered linear equal-
ization. A linear equalizer, implemented by means of a FIR
filter, will be used to minimize the intersymbol interference
introduced by the channel. Hence, the equalizer output is

yk =
Lw−1∑
n=0

wnxk−n = wTxk, (2)

wherew is the vector of filter coefficients. The goal of the
blind algorithm is to find the coefficients that minimize the
intersymbol interference (ISI) introduced by the channel.
Since it does not have a reference sequence, a blind algo-
rithm must to make use of somea priori knowledge of the
statistics of the input signal to adapt the weights. For in-
stance, the Godard algorithms [4] minimize the following
cost function

JG(w) = E
[
(|yk|p −Rp)2

]
, (3)

where thea priori knowledge is carried in the ratio

Rp =
E[|sk|2p]
E[|sk|p]

. (4)

CMA is the specific Godard algorithm forp = 2.

3. SAMPLED PDF COST FUNCTION

In order to employ as much information as possible, in this
paper we propose to make use of thea priori knowledge of
the probability density function (pdf) ofSp = {|sk|p}. This
pdf contains more information than the ratio (4). Specifi-
cally, the aim is to fit the pdf at a number,Np, of represen-
tative points (the sampling points). In this way, the proposed
cost function is

J(w) =
1

Np

Np∑
i=1

(fY p(ri)− Ti)
2
, (5)

whereY p = {|yk|p}, fX(x) denotes the pdf ofX atx, and
Ti are the target values of the pdf atri (Ti = fSp(ri)). The
minimum ofJ(w) is obtained when the pdf ofY p matches
fSp(r) at the sampling pointsri.

The pdf at the equalizer output is estimated by using the
Parzen window method. Considering a window of theL
previous symbols, the estimate offY p at radiusri at timek
is

f̂Y p(rp
i ) =

1
L

L−1∑
j=0

Kσ(ri − |yk−j |p), (6)

whereKσ(x) is the Parzen window kernel of sizeσ. Gaus-
sian kernels with standard deviationσ are employed. For
the sake of consistency, the target pdf values (the values at
ri) must be evaluated taking into account the nature of the
estimator we are using to estimatefY p(ri). Consequently,
the original pdf must be convolved with the same kernel
used by the estimator

Ti =
1

Ns

Ns−1∑
j=0

Kσ(ri − |sj |p), (7)

whereNs is the number of complex symbols in the constel-
lation of the specific modulation.

Substituting (7) and (6) into (5), the cost function at in-
stantk becomes

J(wk) =
1

Np

Np∑
i=1

 1
L

L−1∑
j=0

Kσ(ri − |yk−j |p)− Ti

2

.

(8)

4. STOCHASTIC GRADIENT ALGORITHMS

The gradient ofJ(wk) with respect to the weight vector is

dJ(wk)
dwk

= − 2
Np

Np∑
i=1

 1
L

L−1∑
j=0

Kσ(ri − |yk−j |p)− Ti


 1

L

L−1∑
j=0

K ′
σ(ri − |yk−j |p)

d(|yk−j |p)
dwk

 . (9)

This expression can be used to implement a batch version
of the algorithm. However, for the sake of minimizing the
computational burden in order to allow the online imple-
mentation of the method, a stochastic gradient algorithm has
been developed considering only the actual sample (L = 1).
We have also consideredp = 2, which is the more conve-
nient choice. In this case, the estimation of the pdf is per-
formed using only one term of the Parzen sum (6). There-
fore, the same kind of estimation must be employed for the
targetTi in order to guarantee consistency. On the other
hand, the natural choice for the sampling pointsri is |si|2
(this point is discussed in section 5.1). In this case, the more
suitable target value is given by

Ti = Kσ(ri − |si|2) = Kσ(0), (10)

and the adaptation term of the stochastic algorithm becomes

∆wk = − 2
Np

Np∑
i=1

(
Kσ(ri − |yk|2)−Kσ(0)

)
K ′

σ(ri − |yk|2)ykx∗
k. (11)



Finally, the weights are adapted by

wk+1 = wk − µσ∆wk. (12)

The normalized step sizeµσ = µσ3 has been introduced to
compensate the1/σ3 term of the gaussian kernel derivative
K ′

σ(x). Therefore, in the following we will only considerµ
when referring to the step size.

5. IMPLEMENTATION DETAILS

5.1. Selection of the sampling pointsri

As we have already said, the natural choice forri is |si|2,
taking only the values that are different. For instance, in
a 16 QAM (with{±1,±3} in both the real and the imagi-
nary parts of each symbol), the number of sampling points
is Np = 3, with |si|2 = {2, 10, 18}.

This choice provides equalization with exact gain iden-
tification when using a small kernel size. In this case, a
sample only interacts with the closest target and it is easy
to understand that the minimum ofJ(w) is obtained when
the equalizer pdf fits the constellation pdf. However, a large
kernel size allows the interaction of each sample with all the
target values. In this case, the minimum of the cost function
(for L = 1) is achieved when the pdf at the equalizer output
is slightly scaled down. This means that this choice for the
sampling points equalizes the channel up to gain identifica-
tion. In order to ensure unity gain, the adapting expression
(11) must be analyzed. Naturally, we have to require that
the expectation of (11) be zero when perfect equalization is
achieved. To obtain an analytical expression forri to ac-
complish this requirement is rather involved. However, it is
simple to obtain a numerical solution. Under the assump-
tion of perfect equalization and unity gain, it is possible to
show that the sampling points for which the expectation of
(11) equals to zero are

ri = F (σ)|si|2, i = 1, · · · , Np, (13)

whereF (σ) is a compensation factor, which depends on the
kernel size. For a 16QAM, this factor has been obtained
numerically and it is plotted in Figure 1.

It can be seen that the compensation factor becomes1
for small kernel sizes. This means that in this situation,
when only iteration with the closer target is allowed, the
sampling points are|si|2, which is the more intuitive choice.

We want to note that, although strictly speaking the tar-
get values given by (10) should be modified to take into
account the deviation with respect to|si|2, in practice we
have observed that usingKσ(0) provides more satisfactory
results.
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Fig. 1. Compensation factor for a 16 QAM

5.2. Effects of the kernel size

The kernel sizeσ plays a key role in this algorithm. It deter-
mines both the convergence speed and the accuracy of the
final solution. A large kernel size provides a fast conver-
gence because it allows the interation of the samples with
all the target values. On the other hand, a small kernel size,
which only allows iteration with the closest target, is more
appropriate when the concern is accuracy. This limited in-
teraction produces, in practice, a decision directed equaliza-
tion behavior.

In communication systems, convergence speed is a very
important issue. Typically, blind algorithms reduce ISI until
the eye of the constellation is opened. At this point, the sys-
tem switches to decision directed equalization, which pro-
duces a finer equalization. To obtain a fast convergence a
large kernel size must be selected. When convergence is
achieved, it is possible to switch to decision directed equal-
ization or to use a small kernel size. However, the proposed
method allows another interesting alternative: a soft transi-
tion from blind to decision directed equalization by adap-
tively controlling the kernel size.

5.3. Soft blind to decision directed transition

We have discussed the fact that the kernel size controls the
convergence speed and the final accuracy of the solution,
and the fact that the two are in opposition with each other.
Therefore, an interesting approach consists of adaptively
controling the kernel size to have a large value in the blind
stage and to progressively decrease it during convergence to
obtain a finer final equalization.

An error measure, which is based on the variance of the
error with respect to the closer target, has been employed to



control the kernel size. This measure is iteratively adapted,
using a forgetting factorα, by means of

Ek+1 = αEk +(1−α) min
{i=1,··· ,Np}

(
(|yk|2 − r2

i )2
)
. (14)

In this approach, the kernel size is obtained by

σk = aEk + b, (15)

wherea and b are empirically determined constants. For
instance, for a 16 QAM modulation we have found, after
testing in a large number of channels, thata = 3.5 and
b = −9.5 provide very good results.

We would want to remark that in order to obtain a suit-
able soft transition, the sampling pointsri must be adapted
at each iteration according to the current kernel size. In this
approach, a look-up table has been used to evaluateF (σ).

Taking this into account, the soft transition algorithm
can be summarized in the following steps:

1. Initializeµ, E1, α.

2. For k=1,2,...

(a) Evaluateσk by (15)

(b) Updateµσ = µσ3
k

(c) ObtainF (σ)

(d) Updateri = F (σ)|si|2

(e) Evaluate∆wk by (11)

(f) Updatewk+1 by (12)

(g) EstimateEk+1 by (14)

End

6. RESULTS

The proposed method has been tested in several different
channels for QAM modulations. The intersymbol interfer-
ence (ISI) will be used as a figure of merit to compare the
performance of the methods. It can be computed as

ISI = 10 log10

∑
n |θn|2 −maxn |θn|2

maxn |θn|2
, (16)

whereθ = h∗w is the combined channel-equalizer impulse
response.

6.1. Blind equalization

In this section we will compare the performance of the pro-
posed algorithm working only in a blind mode. Results will
be compared with those provided by CMA, which is the
most widely used blind algorithm. The main requirement of

blind equalization is convergence speed. This means that a
large kernel size is necessary.

In the first example we have considered a 16 QAM mod-
ulation (±{1, 3} levels for in phase and quadrature compo-
nents) and the following channel

H1(z) = (0.2258+0.5161z−1 +0.6452z−2 +0.5161z−3).

White Gaussian noise, with a signal to noise ratio (SNR)
of 30 dB, has been added at the output of the channel. A
Lw = 21 taps equalizer with tap-centering initialization has
been employed. The following parameters have been se-
lected: a step sizeµ = 0.02 and a kernel sizeσ = 15. This
large kernel size has been selected in order to maximize the
convergence speed. Figure 2 compares the average results
obtained in 100 Montecarlo trials with those obtained with
the CMA algorithm using the step sizeµ =1e-5 (the value
that provides the fastest stable convergence).
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Fig. 2. Convergence for a 16 QAM inH1(z)

It can be seen that the sampled-pdf approach exhibits a
remarkably faster convergence than CMA. In this channel,
CMA shows a very slow convergence, but the proposed ap-
proach has shown to be faster in channels where CMA pro-
vides a fast convergence, even when a higher level modula-
tion is used. For instance, we have also tested the following
non-minimum phase channel

H2(z) =
1√
4.75

[
(.2 + .3i) + (.9 + .9i)z−1+

(.9 − 8i)z−2 + (.8 + .9i)z−3 + (.3 − .1i)z−4
]
. (17)

In this case a 256 QAM modulation (±{1, 3, ..., 15} levels
for in phase and quadrature components) has been tested .
The kernel size isσ = 450 (note that we have to ensure the
interaction of the symbols with all the target values and the
largest value for|si|2 is 450). The step sizesµ = 1e−7 and



µ = 1e − 3 have been selected for CMA and sampled-pdf
respectively, which are the values that provide the fastest
stable convergence in both cases. The convergence results
are plotted in Figure 3.
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Fig. 3. Convergence for a 256 QAM inH2(z)

Again, the sampled-pdf shows faster convergence. We
want to remark that both methods have been tested over a
large number of channels and not a single case has been
found where CMA outperforms the proposed approach in
terms of convergence speed.

6.2. Decision directed equalization

One of the features of the proposed approach is that it al-
lows a fine equalization by selecting a small kernel size.
For instance, Figure 4 shows the ISI evolution usingσ = 1
for H2(z), after the initial convergence has been achieved
usingσ = 15 for a 16 QAM modulation. The proposed
method has been compared with decision directed equaliza-
tion (DDE), which is the more common equalization tech-
nique to refine an initial blind equalization. It can be seen
that the performance is similar to DDE, obtaining a fine
equalization. Moreover, the sampled-pdf approach does not
require a decision and, therefore, it is not necessary to per-
form a previous phase identification.

6.3. Soft transition from blind to decision directed

In the following we will demonstrate the ability of this adap-
tation method to implement a soft transition between blind
and decision directed-like equalization using (14) and (15).
The method has been implemented for a 16 QAM modula-
tion, and the compensation factorF (σ) has been evaluated
by means of a look-up table. The following channel [1, 2]
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Fig. 4. Refinement withσ = 1 in H2(z) for a 16 QAM

has been employed to test this soft transition approach

H3(z) = ejθ 0.7 − z−1

1 − 0.7z−1
. (18)

In the first example, no phase rotation (θ = 0) is con-
sidered. The following parameters have been used for the
proposed method:µ = 0.02, α = 0.99, a = 3.5 and
b = −9.5. E1 has been initialized to start with a kernel size
σ1 = 15. Results are compared with those provided by the
Benveniste-Goursat method [10]. A step sizeµ = 2e − 4
(the maximum for stable convergence) and the parameters
recommended in [11] for digital TV channels are employed.
Figure 5 compares the convergence of both methods.
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Fig. 5. Adaptiveσ in H3(z) for 16 QAM with θ = 0

The proposed approach is faster than the Benveniste-
Goursat method and it provides an equivalent final accu-



racy. The advantage is more pronounced when the channel
introduces some phase rotation. Figure 6 compares the con-
vergence forθ = π/8. Now the maximum step size provid-
ing stable convergence for the Benveniste-Goursat method
is µ = 1e− 4.
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Fig. 6. Adaptiveσ in H3(z) for 16 QAM with θ = π/8

It can be seen that the performance of the Benveniste-
Goursat method is clearly penalized by the phase rotation.
However, the proposed approach is phase rotation invariant
and, therefore, it provides the same results in both cases.

7. CONCLUSIONS AND FURTHER RESEARCH

A new method for blind deconvolution of multilevel mod-
ulations has been proposed. The proposed cost function is
the squared error in the approximation of the pdf at certain
sampling instants. The optimal sampling instants depend
on the symbols of the constellation and on the kernel size
of the Parzen window method. For a small kernel size the
sampling points are specifically determined by the squared
modulus of the symbols. However, for large kernel sizes
a compensation factor must be introduced to ensure unity
gain.

The proposed method has been tested for several chan-
nels in QAM modulations and it has demonstrated to be
faster than CMA. Moreover, the algorithm is able to sat-
isfactorily produce a soft transition between blind and de-
cision directed operation. In this case, it outperforms the
Benveniste-Goursat method. Therefore, this algorithm can
be successfully employed in applications where both CMA
and Benveniste-Goursat algorithms are already being used.

Further research is necessary to analyze the convergence
behavior of the algorithm and to obtain analytical expres-
sions for the compensation factor providing unity gain, but

the experimental results have shown an excellent perfor-
mance.
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