
Abstract The ability to record, in real-time, the activity of 
hundreds of cortical neurons gives the ability to selectively 
study the function of clusters of cortical neurons in Brain 
Machine Interface (BMI) experiments. We have demonstrated 
using a recursive multilayer perceptron (RMLP) that using the 
appropriate signal processing theory in a well-chosen 
parsimonious model, we can develop constructs that agree with 
basic physiological modeling of neural control. By looking 
through the trained model, we have found interesting 
relationships between the neuronal firing and the movement. 
The RMLP allows us to continuously study the relationship 
between neural activity and behavior without the active 
interference of the experimenter. The findings presented in this 
study offer an opportunity for the neuroscience community to 
compare the cortical interactions as constructed by the RMLP 
to what is known about motor neurophysiology. 
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I. INTRODUCTION 
 

With the development of the ability to record, in real-
time, the activity of hundreds of cortical neurons, we have 
the freedom to selectively pick from the ensemble the 
neurons that we study in Brain Machine Interface (BMI) 
experiments. These experiments provide multi-unit 
recordings of behaviorally active animals, where not only 
neural activity, but also the corresponding reaching 
movements in 3D space are simultaneously recorded.  The 
contributions of the activity of subsets of this large ensemble 
can now be directly studied relative to the continuous 
behavior of the animal over long periods of time. This new 
field of BMIs holds the promise of a new framework to help 
understand the neural code due to the availability of time 
synchronized, high-resolution quantitative data between 
multi-unit recordings and behavior. 

Using input/output models we can relate a subset of the 
spatio-temporal spike trains that code the intent and the act 
of moving the hand (input signals) with fine timing relations 
of the hand movements (desired response). The model 
parameters (weights) are adjusted to minimize the difference 
between the model output and hand movements using a 
statistical criterion such as mean-square error. We repeat the 

presentation of input training samples until a stopping 
criterion is met. At the end of training, one ends up with a 
model that is able to predict the desired hand positions from 
the spike trains. Many other BMI groups have demonstrated 
neural control of devices with chronically implanted 
electrodes. Most notably Nicolelis et al. have trained linear 
FIR filters and Time-Delay Neural Networks (TDNN) to 
predict the hand position of a primate in 3-D space [1]. 
Neural cursor control using linear filters trained with least 
squares has also been explored by Donoghue et al. [2]. More 
recently Schwartz, et al. has also shown neural cursor control 
using a modified version of the Population Vector Algorithm 
(PVA) [3]. Chapin and colleagues utilized a Recursive 
Multilayer Perceptron (RMLP) to predict lever pressing from 
ensembles of rat cortical neurons [4]. We have also 
demonstrated that the hand position of a primate can be 
predicted with high accuracy using a RMLP, Multiple Linear 
Models, and a Kalman filter [5] [6]. In our data, the RMLP 
model has produced the best reconstruction of hand 
movement from neuronal firing patterns when measured in 
terms of correlation coefficient, target acquisition, and signal 
to error ratio. This body of work indicates that a reasonably 
accurate functional mapping between neural activity and 
behavior can be constructed, and we hypothesize here that it 
can be further used to interpret relationships between the 
spike train and hand movements. 
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We will demonstrate below using an RMLP, that using 
the appropriate signal processing theory in a well-chosen 
parsimonious model, we can develop constructs that agree 
with basic physiological modeling of neural control. 
However, we would like to emphasize that the relevance of 
this analysis to neurophysiology cannot be guaranteed and it 
either requires further scrutiny by comparing the model 
predictions with established neurophysiological principles. 
At the very least, these predictions shall be used as a mere 
guiding hypothesis for further research work in 
neurobiology.  
 
II. METHODOLOGY 

 
In this experiment we are interested in the cortical 

regions that contribute to the triad of movements defined in 
Fig. 1. Each reaching movement can be segmented as a reach 



to food (rest/food), a reach from food to mouth 
(food/mouth), and a reach from mouth to rest (mouth/rest). 
By training the RMLP model using the neurons associated 
with different combinations of sampled cortical areas, and 
observing how the network output changes during testing we 
can build a set of constructs and compare with established 
neurophysiological principles.  

The RMLP modeling approach assumes that there exists 
an unknown system that maps spike trains into hand 
positions, and we can adapt a nonlinear model that can 
approximate the desired relationship. We can parameterize 
this unknown system by training the RMLP with 
multichannel neuronal firing times from up to 104 cells that 
were collected synchronously at Duke University using owl 
monkeys (Aotus trivirgatus). Microwire electrodes were 
implanted in the posterior parietal (PP) (Area 1), primary 
motor (M1) (Area 2, Area 4), and premotor dorsal (PMd) 
(Area 3). During the neural recording process, sixty-four 
electrodes were implanted with each cortical region 
receiving sixteen electrodes [7]. From each electrode, one to  
four neurons can be discriminated. The firing times of single 
neurons were recorded while the monkey performed the 3-D 
reaching task.  

Neuronal firings, binned (added) in non-overlapping 
windows of 100ms, were directly used as inputs to the 
RMLP. The monkey’s hand position, used as the network 
desired signal, was also recorded (with a time shared clock) 
and digitized with 200Hz sampling rate. In order to take the 

monkey’s reaction time into account, the spike trains were 
delayed by 0.23 seconds with respect to the hand position. 
This delay was chosen based on loose neurophysiologic 
reasoning, and should be subject to optimization in future 
studies. The architecture which uses this data can accept an 
input layer with any combination of up to 104 channels, a 
hidden layer of nonlinear processing elements (PEs), (in this 
case tanh), and an output layer of three linear PEs.   
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Figure 1. One movement segmented into rest/food, food/mouth, and
mouth/rest motions. 
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Figure 2. Fully connected, state recurrent neural network 
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Fig. 2 depicts the topology of the recurrent network that 
is used in our studies. Each hidden layer PE is connected to 
every other hidden PE using a unit time delay. We can see in 
(1) that the state produced at the output of the first hidden 
layer is a nonlinear function of a weighted combination 
(including a bias) of the current input and the previous state.  
The feedback of the state allows for continuous 
representations on multiple timescales. The output layer is a 
simple linear combination, shown in (2), of the hidden layer 
states. Memory is created by feeding back the states of the 
hidden PEs among themselves. Each of the hidden PEs 
outputs can be thought of as a nonlinear adaptive basis of the 
output space utilized to project the high dimensional data. 
These projections are then linearly combined to form the 
outputs of the RMLP that will predict the desired hand 
movements.  

The RMLP first proposed in [8] differs from a 
feedfoward MLP since it contains feedback connections in 
its hidden layer. The MLP from which this topology is 
derived has been shown to be a universal mapper in ℜ  [9]. 
The time delay neural network (TDNN) has been also shown 
to be a universal mapper in myopic functional spaces [10]. 
Although no theoretical work to prove the universal 
approximation of the recurrent MLP is known, we expect it 
to display the same universality because it can be unfolded in 
a TDNN [11]. Hence this network when properly 
dimensioned and trained has the power to find an arbitrary 
non-linear mapping. 

n

The RMLP was trained with backpropagation through 
time (BPTT) with a trajectory of 30 samples and learning 
rates of 0.01, 0.01, and 0.001 for the input, feedback, and 
output layers respectively. Momemtum learning was also 
implemented with a rate of 0.7. One hundred Monte Carlo 
simulations with different initial conditions were conducted 
with 20,010 consecutive bins (2,001 secs) of neuronal data to 
improve the chances of obtaining the global optimum. 
During training all Monte Carlo simulations achieved a 
similar mean square error level, and the one with the smallest 
error was chosen. In testing, the network parameters were 
fixed and 3,000 consecutive bins (300 secs) of novel 
neuronal data were fed in the network to predict new hand 
trajectories. Fig. 3a shows the output of the trained network 
with 3-D hand position decomposed into X, Y, and Z 



coordinates. We can see from the plots that the RMLP 
repeatedly produced accurate estimations of the peak values 
of the movements in the test set. In [9] we quantify the 
accuracy of the mapping in terms of correlation coefficient 
and signal to error ratio. The part of the trajectory that is 
most difficult to model is the X coordinate when the hand is 
at rest close to the animal’s body. We also conclude that for 
the short period of observation (5 min) in this study, there is 
no noticeable progressive degradation in time of the model.  

To evaluate the performance of the RMLP we propose a 
more specific figure of merit that emphasizes the accuracy of 
the reach movement. We first train the RMLP with the entire 
ensemble of neurons, and plot the probability of finding a 
network output (using a test dataset of novel neuronal data) 
within a 3-D radius around the desired data point. The first 
subplot of Fig. 3b shows the error probability for the entire 
test trajectory as a function of 3-D error radius as computed 
by (3) and (4). The dynamic range of the movement is 
approximately 100mm. Since we are training with the entire 
ensemble of neurons, we are sending to the model the 
maximal amount of available information; as a result, this 
evaluation represents the best performance possible.   
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Figure 3. a) Actual (dotted) and estimated (solid) hand coordinates for the
testing period using RMLP. b) Cumulative error probability (Probability
that the error radius is smaller than the value on the horizontal axis.) 

 
Since target acquisition is critical for real BMI 

implementation, a plot of the error probability for only the 
movements is shown in the second subplot of Fig. 2b. The 
movement error probability curve contains two linear regions 
(this means the underlying PDF is roughly a mixture of two 
uniform distributions: region A (0-20 mm) can be attributed 
to the variance of the predictions at the peak values while 
region B can be attributed to peaks not captured by the 
model). We feel that the results of the RMLP movement 
estimations may be further improved for BMI applications. 
However, at this point in our study the RMLP model 
produces the best estimations when compared to other 
modeling techniques (FIR, local linear models, Kalman 
filters, and TDNN) [5] [6].  

Now that we have an estimate of the best performance 
we can achieve with the full ensemble of neurons, we trained 
fifteen recurrent neural networks using all combinations of 
the base set of four cortical regions and neuronal firing 
counts. The same portions of training and testing data as well 
as network parameters were utilized. After training, the 
RMLP weights were frozen and five minutes of novel 
neuronal data was presented and output trajectories were 
produced.  
 
III. RESULTS 
 

The X, Y, and Z network outputs (bold) as well as the 
desired X, Y, and Z coordinates for one movement and each 
of the fifteen networks are plotted in Fig. 4.  Cortical area 1 
captured the reach rest/food but could not achieve the large 
displacement for food/mouth. Area 1 shows a poor fit 
(smaller network output) in the food/mouth region. Area 2 
does not display any correlation to the desired trajectory 
even though neuronal firing in this region is nonzero. Sharp 
changes in the network output appear in movement 
transitions for the network trained with area 3. Area 4 
accurately captures all three peaks in the food/mouth and 
mouth/rest regions, but misses the beginning of movement. 
Networks trained with combinations of the base cortical 
areas display the following trends in the hand trajectory 
reconstruction: 

 
• All combinations trained without area 1 do not 

capture the reach rest/food. 
• All combinations trained without area 4 do not 

capture the reach food/mouth  
• All combinations trained with area 2 perform as well 

as without area 2. Only small variations in the 
rest/food trajectories are evident. 

• The network trained with areas 1, 3, and 4 has smaller 
ripples during movement than the network trained 
with only areas 1 and 4.  

 



IV. DISCUSSION 
 

In our development of BMIs we have adopted the 
RMLP as a tool not only to discover the mappings from 
spike trains to hand movements, but also for gaining insight 
into the neural coding strategies. The RMLP allows us to 
continuously study the relationship between neural activity 
and behavior without the active interference of the 
experimenter. We simply choose neural data to input to the 
model and if a mapping with the behavior exists, the 
universal approximationg capabilities of the network will 
construct the relationship. In this paradigm we are passively 
observing how the network responds to inputs from different 
areas of the brain. 
 Even though we may not know the exact details of the 
neural code, our understanding of the inner workings of the 
model allow us to draw conclusions about some of the 
relationships between neuronal firing and behavior. In Fig. 4, 
we have observed that RMLPs trained without the neurons in 
the posterior parietal cortex fail to capture the reach to the 
food. However, when these neurons are included in the 
model, the network is able to produce the mapping and we 
conclude that some aspect of this group’s firing is correlated 
with the movement. The same observation holds true with 
the RMLPs trained without neurons of the primary motor 
cortex. The absence of neural activity correlated with the 
behavior does not allow the RMLP to capture the reach from 
food to mouth to rest.  
 The results in this study offer the opportunity to 
speculate about the role selected cortical areas in the RMLP 
and how the conclusions connect to what is known about 
motor neurophysiology. However, we would like to 
emphasize that this analysis requires further scrutiny by the 
neuroscience community. Despite these issues by looking 
through the trained model, we have found interesting 
relationships between the neuronal firing and the movement. 
However, we must be cautious when drawing conclusions 

from a model trained for a specific reaching task and a 
specific set of neural recordings. It is by far not all 
encompassing and representative of all movements and all 
neuronal firing patterns. In light of the overwhelming 
challenges associated with understanding neural coding, we 
still claim that the model based approach developed here to 
understand the strategies taken by motor cortex neurons is a 
small step towards the goal.  
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Figure 4. Testing output X, Y, and Z trajectories (bold) for one desired
movement (light) from fifteen RMLPs trained with neuronal firing counts
from all combinations of four cortical areas. 
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