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ABSTRACT

A blind source separation algorithm is presented that performs on-
line separation of an unknown, time-varying, instantaneous mix-
ture of independent sources. This procedure utilizes the informa-
tion-theoretic MeRMaId-SIG criterion and an on-line PCA 
algorithm, referred to as SIPEX-G, that has been recently submit-
ted for publication. Results indicate that the combination of the 
two on-line criteria is able to track a rapidly changing mixing 
matrix. A performance comparison of separation criteria is also 
made using the same, aforementioned on-line PCA algorithm. 
Results show the superior performance of the proposed method.

1. INTRODUCTION

Much of the research in the field of blind source separation has 
been focused on the separation of instantaneous (noiseless, over-
determined, linear, time-invariant) mixtures. This is not, however, 
a very realistic model for many real-world mixtures. There are 
several changes to the (assumed) mixing model that can be made 
to remedy this problem. Examples include the addition of noise to 
the model, the possibility that the mixture is under-determined 
(fewer observations than sources), the use of convolutive and/or 
non-linear demixing architectures, and finally, the case that the 
mixture is time-varying. The last item is the one that is addressed 
herein.

Time-varying mixtures are an especially important topic in the 
demixing of speech signals for the application of hearing aids. 
This is due to the fact that the mixing matrix can change very rap-
idly [1]. The more rapidly the mixing matrix changes, for a fixed 
sample frequency, the fewer the number of data samples are avail-
able to estimate the demixing coefficients. To wit, it is not wise to 
use data samples at time k - N (for N large) for estimating the 
update to the demixing coefficients at time k since the statistics of 
the observations may have changed drastically in the last N sam-
ples. The MeRMaId and MeRMaId-SIG algorithms have already 
been shown to be very data efficient [2], [3]; therefore, they 
appear to be a good candidate for tracking a rapidly changing 
mixture. Since, in addition, it is desired to produce an on-line 
method, only the MeRMaId-SIG criterion is considered presently.

A previous study, which focused on demonstrating the viability 
of an on-line information-theoretic criterion, briefly discussed 
time-varying, instantaneous demixing [3]. In [3], only the rotation 
of the mixture was varied as a function of time. This greatly sim-
plified the experimental procedure, but is not very realistic since 

the sphering of the mixture was always constant. Furthermore, 
this approach prevented the direct comparison of the MeRMaId-
SIG algorithm with other methods (that do not constrain the 
demixing matrix to be a pure rotation). This research aims to 
extend the results of the previous paper by adding to the MeR-
MaId-SIG algorithm, an on-line procedure for sphering the data. 
The combination of the two, therefore, is a true on-line procedure 
and it allows for the comparison of several separation criteria.

2. SYSTEM DESCRIPTION

A simple instantaneous mixing model for hearing aid applications 
is to assume that the sound pressure varies inversely with the dis-
tance of the speaker to each sensor (i.e. to each ear). This ignores 
the fact that the signals at the sensors that are farther from a par-
ticular source than a reference sensor are delayed with respect to 
the reference signal. It also ignores the effect of the head-related 
transfer function. It does, however, provide a simple instanta-
neous model that can be easily simulated.

Given this model, the mixing matrix, Hk, is found at every time 
sample (determined by the sampling frequency) for the desired 
speaker geometry. In addition, the sphered observations, xk, are a 
related to the (zero-mean) sources, sk, by the following,

where xk and sk are (N x 1) vectors, Hk and Wk are the (N x N) 
mixing and sphering matrices, respectively, at time k, and T is the 
matrix transpose. For now, it is assumed that there are only two 
sources (speakers) and two sensors, and that each sensor is 
located in one of the ears of the observer. As an example, consider 
the case where the distance between the ears is 1/6 meter and the 
speakers are located 1 m directly in front of and 2 m directly to the 
left of the observer. The resulting Hk matrix is then,

The number 12/23 is found by taking the inverse of the distance 
between the second speaker and the left ear of the observer, 1/(2 -
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1/12), where 1/12 is half of the head-width. See Figure 1 to help 
visualize the geometry for this example.

Using equation (1), the estimated sources, yk, are then deter-
mined to be,

where yk and Rk are the (N x 1) output and (N x N) demixing 
matrices, respectively. For MeRMaId-SIG, the Rk matrix is con-
strained to be a pure rotation. Furthermore, the Wk sphering 

matrix is ideally ��
-1/2, where � is the matrix of eigenvectors of

the autocorrelation of HTs and � is the corresponding eigenvalue 
matrix. Notice, however, that the ideal value of Wk changes as the 
mixing matrix changes, therefore it must be continually adapted 
as will the demixing matrix. See Figure 2 for a block diagram of 
the mixing and demixing process.

3. ALGORITHM DESCRIPTION

There are two algorithms that constitute the proposed method, the 
SIPEX-G algorithm [4] is an on-line criterion for updating the 
sphering matrix and the MeRMaId-SIG algorithm is an on-line 
method for updating the demixing matrix. Each of these will be 
described briefly before proceeding.

The SIPEX-G algorithm is introduced in [4]. One of the moti-
vations for this algorithm is that the sphering matrix is a product 
of an eigenvector matrix, which is orthonormal, and the inverse 
square root of the corresponding eigenvalue matrix, which is 
diagonal. Ignoring the diagonal matrix for a moment, it is easy to 
see that the observations can be made orthogonal to each other 
using only the orthonormal matrix, which can be implemented 
using only Givens rotations [5]. In addition, since the sphering 
matrix is determined using only second-order techniques, the 
resulting cost function is simply,

where Var(yi) is the variance of the ith output and �i is a corre-
sponding scalar gain chosen such that �1 > �2 > ... > �N-1  > 0. In 
the following section, this gain (there is only one gain for N = 2) is 
set to two.

Simulations have shown that this method converges more 
quickly (convergence is simultaneous for all principle compo-
nents) than several other methods. For example, in [4] it is shown 
that the convergence is roughly 5 times as fast as Sanger’s rule 
[6]. One other adjustment must be made to this criteria in order to 
sphere the data, that is to scale each output to have unit variance. 
The scale factors, which are the inverse square root of the eigen-
values of the unsphered observation covariance matrix, are 
already computed by the SIPEX-G algorithm and therefore 
require no additional computation. 

The MeRMaId-SIG algorithm is described completely in [3]. It 
is a non-parametric, information-theoretic criterion that aims to 
minimize the Renyi’s quadratic mutual information between the 
outputs. The cost function is given by,

where HR(yi) is the Renyi’s (quadratic) marginal entropy [7] of 

the ith output which is given by,

Fig. 1. Top view of two speakers and a single observer 
(lower right person).
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    Fig. 2. Block diagram for BSS of N = 2 sources
                            and observations.
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where fY(yi) is the marginal pdf of the ith output. When Parzen 
windows is used with Gaussian kernels, the resulting expression 
for the Renyi’s marginal entropy is,

where G(x,�2) is a Gaussian pdf evaluated at x, having zero-mean 
and a variance of �2, and L is the blocksize. The above expression 
is for the original MeRMaId algorithm, the only change required 
to produce the MeRMaId-SIG algorithm is to drop one of the 
summations in equation (7) and sum over only consecutively 
occurring samples. This produces the desired result,

Notice that the blocksize, L, in this equation does not prevent on-
line adaptation. It merely represents the number of samples before 
the accumulated result is applied to the tap weights.

4. RESULTS

The Signal-to-Interference Ratio, SIR, will be used to measure the 
performance of the separation techniques. The definition of the 
SIR is given as,

where q = HWR, qi is the ith column of q, and max(qi) is the 
maximum element of qi. This criterion effectively measures the 
distance of the overall mixing matrix, q, from the product of a 
permutation matrix and a diagonal matrix.

An instantaneous mixture of two sources, speech from a male 
and female speaker, is used to compare the MeRMaId-SIG algo-
rithm with Bell and Sejnowski’s version of Infomax [8] and 
Yang’s MMI (Minimum Mutual Information) method [9]. The 
time-varying mixing matrix was determined as stated above for 
the case that one of the sources is 1 m directly in front of the 
observer and the second speaker is initially 2 m directly in front of 
the observer, but is moving in a circle (counter-clockwise) of 
radius 2 m around the observer. This direction of motion was cho-
sen because it produces a faster change in the mixing matrix coef-
ficients than most other directions and therefore represents a 
worst-case type scenario. Note that this case, when the speaker 
walks in a circle around the observer, does not correspond to a 
change in only the rotation matrix. Also, as before, the head-width 
is 1/6 m.

All three methods utilize the same spatial pre-whitening pro-
vided by the SIPEX-G algorithm, so that the separation tech-
niques can be directly compared. In addition, the Infomax and 
Yang’s MMI methods use Amari’s natural gradient [10], and 
Yang’s method uses the adaptive scheme for calculating cumu-
lants. A blocksize of 200 was used and the step sizes for each 
method was chosen to optimize the SIR.

Figure 3 shows the first set of results, with some smoothing 
applied. In this case the speaker that is moving is doing so at a 
constant rate of 1 m/s. At this rate the speaker will be directly 
behind the observer at a time of about 6.3 s (marked by the aster-
isk), and will end up traversing about 3�/2 radians of a circle. 
Notice that when the speaker in motion passes either directly in 
front of or directly behind the observer, the mixing matrix 
becomes ill-conditioned (due to the location of the other speaker), 
and we can expect that during those times, the performance will 
suffer. As can be seen from the figure, this is in fact the case. Also 
notice that outside of those regions, the MeRMaId-SIG algorithm 
quickly adapts to a solution with an SIR of over 20 dB, which is 
the value at which almost no audible interference can be heard. 
The other methods, on the other hand, never reach 20 dB SIR. In 
fact, Yang’s method performs as well as it does only because the 
step size required for stability was so small that there was virtu-
ally no adaptation. The change in the performance seen for Yang’s 
method is, consequently, due entirely to the sphering routine.

A second plot, shown in Figure 4, is used to display the results 
in a geometric manner. It is desired to show at each unit of time, 
given the coefficients of the demixing matrix, the point in two-
dimensional space where the algorithm believes the two sources 
are located. This is not possible because of the indeterminacies of 
the demixing process; however, this can be mostly resolved if the 
demixer is allowed to know the true power of the sources. The 
vertical line in the plot shows the convergence of the estimate of 
the location of the stationary speaker due to the MeRMaId-SIG 
algorithm, which has an ideal value of (0, 2). The circle (for 3�/2 
radians) is the ideal path of the second speaker. The estimate in 
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Fig. 3. SIR versus time for three different on-line
separation methods for counter-clockwise motion of 1 m/s.
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this case starts out up and to the left, but then begins to trace out 
the circle. Notice, however, that it always overestimates the dis-
tance of the second speaker.

A second example was used to test the algorithm for the case 
that the speaker is moving much faster than in the previous exam-
ple. In this case, shown in Figure 5, the speaker is now moving at 
a very brisk 5 m/s. At this rate, the speaker is able to go around the 
observer just over 4 times during the 10.7 seconds of data. There-
fore we can expect 8 points in time where the mixing matrix is ill-
conditioned (indicated by the asterisks). As can be seen, the SIR 
falls in each of these locations, but is quickly restored to a value 
of over 20 dB between each of these areas. Due to the poor perfor-
mance on the easier data set, the other two separation methods 
were not tested here.

5. CONCLUSIONS

The speed of convergence of the separation and PCA algorithms 
is absolutely critical for real-world applications. If either one were 
very slow, it wouldn’t matter how fast the other one was. Due to 
the extreme data efficiency of the two algorithms presented 
herein, namely MeRMaId-SIG and SIPEX-G, it has been shown 
that time-varying demixing (of instantaneous mixtures) is, in fact, 
possible.
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Fig. 4. Two-dimensional geometric estimates of the
locations of the two sources.

Fig. 5. SIR versus time for the MeRMaId-SIG algorithm 
for counter-clockwise motion of 5 m/s.
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