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ABSTRACT

Blind source separation consists of recovering n source sig-
nals from m measurements that are an unknown function of
the sources. In solving the underdetermined (m < n) linear
problem three stages can be identified: to represent the sig-
nals in an appropriate domain, to estimate the mixing ma-
trix, and to invert the linear problem to estimate the sources.
As a consequence of having more degrees of freedom than
constraints, the inverse problem has an infinite number of
solutions. To choose the “best” solution, additional con-
straints have to be imposed on the basis of some perfor-
mance criterion or previous knowledge. In this communi-
cation we present a method that choose the “best” demixing
matrix in a sample by sample basis by using some previous
knowledge of the statistics of the sources. The behaviour of
the estimator is compared to the global pseudo inverse ap-
proach and with other local heuristic methods by means of
Montecarlo simulations.

1. INTRODUCTION

The blind source separation problem consists of estimating
n sources from m measurements that are an unknown func-
tion of the sources. The noise-free linear model for each
sample is

As = x; (1)

where s 2 R
n is the source random vector, x 2 R

m is
the measurement random vector, and A 2 Rm�n is the un-
known mixing matrix.

If the number of measurements is greater or equal than
the number of sources (m � n) it is possible to separate
statistically independent sources provided that at most one
of them is gaussian [1, 2]. Once the mixing matrix is known,
the sources can be readily obtained by the inverse matrix
whenm = n or estimated by using the pseudo-inverse when
m > n.

In the underdetermined case, when less measurements
than sources are available (m < n) there is no unique in-

verse, which means that there exist an infinite number of
source vectors that are solutions of the linear problem (1). A
possible solution could be to use the Moore-Penrose pseudo
inverse of the mixing matrix, this global method uses the
same demixing matrix for the whole data. We could say that
the “best” solution to the inverse problem is determined by
the constraints that one imposes on s on the bases of some
performance criterion or previous knowledge.

Equation (1) can be interpreted from a geometrical point
of view as the projection of the source vectors s from R

n

into the vector space Rm of the measurement vectors x. If
we denote by aj the j-th column of the mixing matrixA, (1)
can be rewritten as x =

Pn

j=1 sjaj , that explicitly shows
that the measurement vector is a linear combination of the
columns of the mixing matrix. According to this interpre-
tation, if at a given time only the j-th source is non zero,
the meassurement vector will be collinear with aj . If the
sources have a probability density function so that a high
percentage of the samples are negligibly small —that is, if
the sources are highly sparse— the measurements will tend
to cluster around the directions imposed by the columns of
the mixing matrix, as shown in figure 1, that allows to esti-
mateA [4]. In many cases, even if the sources do not satisfy
the sparsity premise, it is possible to apply a suitable linear
transform —STFT, DCT, wavelet, . . . — that does allow to
represent the signals in a new space in which the coefficients
are sparse [3, 4, 5].

In this communication we will assume that the signals
are expressed in a suitable domain and that the mixing ma-
trix has been appropiately estimated [6], thus we will focus
on the third stage of the problem: estimating the sources
from the measurements when the mixing matrix is known.
In order to do that, we will introduce in section 2.2, equa-
tion (4), a probabilistic model that allows us to adjust the
sparsity factor of the sources, i.e., the percentage of source
coefficients in the representation domain that are negligible.
With that probabilistic model in mind, we will derive heuris-
tic separation approaches in section 2.1 and a Bayesian es-
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Fig. 1. Columns aj of a mixing matrix A 2 R
2�3 (solid

lines) and measurements x (symbols) for sources with an
80% of zeros.

timator in section 2.2, the behaviour of both families of es-
timators will be compared in section 3.

2. ESTIMATION OF THE SOURCES

The problem of estimating s from equation (1) when the
mixing matrix A —which is assumed to be full rank— and
x are known depends of the relation between m and n. If
m = n the problem is trivial, because the solution is given
by s = A

�1
x. In the overdetermined case (m > n), the

pseudo inverse [7] A+ provides the solution s = A
+
x that

minimizes the L2 norm of the residue, jjx�Asjj. In the un-
derdetermined case (m < n) the problem (1) has an infinite
number of solutions, so it is necessary to impose some adi-
tional criterion to select one solution vector s. One possible
criterion of general applicability could be to impose some
norm Lp of the solution to be a minimum. Specifically, the
solution provided by the pseudo inverse is the one that min-
imices the L2 norm of the solution jjsjj, and with no addi-
tional knowledge of the statistics of the sources could be the
canonical option to choose [8]. As we will show next, if the
signals admit a sparse representation, it is possible to design
better inversion strategies.

2.1. Heuristic approaches

Let us suppose for a moment that for each source vector s—
in the original domain could be a vector for each time sam-
ple, in the transformed domains, one for each coefficient—
only the j-th component is not null. In this case, x will
be collinear with the j-th column of the matrix A and the

components of the source vector will be

sk =
a
T
j x

aTj aj
Ækj ; k = 1; : : : ; n; (2)

where the superscript T denotes transpose, and Æ kj is the
Kronecker delta. In a real situation, even with highly sparse
sources, the signals will rarely be exactly zero, but at each
sample there will be some probability of one of the sources
being significatively bigger than the others. To estimate
which one that component is, we could choose the one that
maximizes the normalized projection on to the directions of
each column of A

j = argmax
k

jaTk xj

aTk ak
; k = 1; : : : ; n: (3)

According to this, the following heuristic criterion —that
we will call 1D— could be used to invert equation (1): ap-
ply (3) to calculate j for each sample and then use (2) to
estimate the source vector. The performance of this method
will depend on up to what point the premise of having only
one significant source component at each sample is satis-
fied.

Another family of methods could be based on building
at each time step a reduced square matrix Ar 2 R

m�m us-
ing m vectors of Rm , chosen between the n column vectors
aj according to some optimization criterion. The result-
ing source vector s will have n � m zeros corresponding
to the non-selected columns, and the other components will
be given by A�1r x. There are many ways of selecting the
appropiate columns of the reduced matrix. In [4] a method
of this family is proposed for the m = 2 case. The crite-
rion it uses is to divide R2 into the sectors defined by the
column vectors aj and to choose at each sample those two
vectos that surround the measurement x. Figure 1 provides
geometric insight on this criterion. The lines represent the
n column vectors aj of A 2 R2�3 and the points represent
the measurements. The sources have eighty percent of zeros
and, in addition, satisify that no more that two sources are
active at the same time. The symbols used for the points are
chosen according to which source is imposed to be zero. In
order for this method to work, the different symbols should
cluster into different sectors; but as it can be seen, that is not
always the case. Other possible criterion —that we will call
m-D— that is valid for any m is to build the reduced matrix
by using the m columns of A with the biggest projection of
x on to its associated unitary vectors. Another criterion of
the same family —that we will call m-DL2— could be to
select the m columns that yield minimum L2 norm s which
has at least n �m zeros. In the section 3 we will compare
these methods for a case with m = 2 measurements and
n = 3 sources.



2.2. Bayesian estimation

If we let A = [a1j � � � jan], where aj are the columns of A,
the measurement is

x =

nX
j=1

sjaj = s1a1 + � � �+ snan:

If, at any given time, we knew that at most m components
of the signal are non zero, the problem would not be under-
determined any more and we could invert it (provided that
we know which are the non zero components). In order to
estimate which sources are active at a given time, we intro-
duce the following probabilistic source sparsity model for
the distributions of the sources

pSj (sj) = pj Æ(sj)+(1�pj)fSj (sj); j = 1; : : : ; n; (4)

where the parameter pj , the sparsity factor, controls the per-
centage of sparsity of each source, Æ(�) is the Dirac’s delta,
and fSj (sj) are the distributions when the corresponding
source is not silent. This densities allow us to parametri-
cally model sources with different degrees of sparsity, and
thus provide a framework to characterize the different inver-
sion strategies as a function of the sparsity of the sources.

2.2.1. A priori probabilities

Let us denote by C0 the event that all the components of the
source vector are zero at a given time, by Cu the event that
only component su is non-zero, by Cu;v the event that su
and sv are the only non-zero components, and in general by
Cu;:::;w that only and all of su; : : : ; sw are non-zero at the
same time. According to (4), the a priori probabilities of
these events (classes) are

p(Cu;:::;v) =
Y

j=u;:::;w

(1� pj)
Y

j 6=u;:::;w

pj :

2.2.2. Conditional probabilities

Next we will consider the conditional densities of the ob-
servations given the events. When all the sources are silent,
P (xjC0) = Æ(x). When only source su is active,

p(xjCu) =
1

jaiuj
fSu

�
xi
aiu

�
;

where xi is the ith component of the measurement x corre-
sponding to a non zero matrix component a iu. In general,
given that the event Cu;:::;w had occurred, when number of
active sources is less than m,

p(xjCu;:::;w) =
1

j detAu;:::;wj

Y
j=u;:::;w

fSj (ŝj);

where

Au;:::;w =

2
64
aku : : : akw

...
...

alu : : : alw

3
75 ;

2
64
ŝu
...
ŝw

3
75 = A

�1
u;:::;w

2
64
xk
...
xl

3
75 ;

and the rows k; : : : ; l have been choosen from A so that
Au;:::;w is invertible. When the number of assumed active
sources equals m, the previous equation still applies by us-
ing the complete columns of A corresponding to the active
sources. As we will show in the next section, we do not need
to consider the case in which the number of active sources
is greater than m.

2.2.3. MAP estimator

By applying Bayes rule, we can calculate the a posteriori
probabilities of the defined events given the measurements
as

p(Cu;:::;wjx) / p(xjCu;:::;w)p(Cu;:::;w);

where we evaluate the a posteriori probabilities for all the
events with a number of active sources less than or equal
to m. The rest of the events, corresponding to the cases
where the number of active sources is greater than m, are
combined into one single event, �C , so that

p( �Cjx) = p(x)�
X

p(Cu;:::;wjx):

For estimating p(x) a number of methods are readily avail-
able. Polynomial expansion approaches [9], kernel-based
methods [10], and parametric estimation methods [11] are
among the options. Once the a posteriori probabilities are
known for all the events, the maximum a posteriori (MAP)
estimator chooses the optimal source estimates correspond-
ing to the event which maximizes p(Cu;:::;wjx). If the se-
lected event is �C, then the minimum norm solution provided
by the pseudo-inverse is used.

3. NUMERICAL RESULTS

In order to compare the different methods, a problem with
m = 2 measurements and n = 3 sources has been studied,
assuming that the mixing matrixA is known. For the source
distributions in (4), we chose Gaussian distributions with
zero mean and unit variance for fSj (sj), and all pj were
assumed equal. In this case, it is not necessary to estimate
p(x) because p(xjC1;2;3) —the only event with a number
of active sources greater than m— can be calculated analit-
ically as a multivariate Gaussian with zero mean and vari-
ance AAT [12].

For illustrating the behaviour of the MAP estimator, we
have performed a simulation using a mixing matrix with
columns at 0, �, and 2�=3 radians, and relative amplitudes



0:55, 1, and 0:85. We have evaluated the posterior probabil-
ities p(Cu;:::;wjx) on a grid, so that the clasification regions
—corresponding to different events Cu;:::;w, and therefore
to different inversion matrices— can be seen in figure 2.
The columns of the mixing matrix are also shown. The
color of the different regions correspond to the decissions
of the MAP estimator. The black regions correspond to the
event in which we estimate that all the sources are active, so
that the pseudo inverse is applied. The regions with differ-
ent gray scales correspond to events with two sources active
at the same time —the source that is considered to be zero
is the one associated to the mixing column most orthogonal
to the region. The bright line on the horizontal axis corre-
sponds to choosing the event C1 as the most probable —
the events C2 and C3, corresponding to points collinear to
second and third mixing columns do not appear due to the
discrete evaluation grid. It can be observed that the decision
boundaries are highly non linear —as opposed to the linear
decision boundaries of the heuristic criterion that divides the
space into sectors according to the mixing columns. As can
be observed in figure 1, most of the measurements are in a
circle arround the origin with a radius similar to the length
of the mixing columns of A, where the non linearity of the
regions is bigger. Some insight can also be obtained about
the 1D heuristic criterion. Even for measurements collinear
with mixing column au, the most probable event is not al-
ways Cu, as can be observed in figure 2, where the bright
horizontal line does not extend after a certain distance from
the origin. The reason of this is that as the horizontal mix-
ing column, a1, is the smallest of the three, then is not very
probable to find far from the origin a measurement due only
to a1.

In order to compare the behaviour of the pseudo inverse,
the different heuristic methods, and the MAP estimator, a
Montecarlo simulation has been performed. We have gen-
erated 10000 source vectors s according to (4) with Gaus-
sian fSj (sj). For each value of the sparsity factor we have
randomly generated 500 mixing matrices with uniform dis-
tribution on the angles and uniform distribution on the mag-
nitude of the column vectors. As a measure of the error of
the estimation ŝ, we have used

SNR = �20 log
jjŝ� sjj

jjsjj
(dB):

Figure 3 shows the results. The pseudo inverse solution does
not depend on the sparsity factor, since it is fixed once the
mixing matrix is known. When the sparsity factor is low,
the performance of the pseudo inverse is better than all the
heuristic methods, but for a sparsity factor arround 70%, the
heuristic methods start to outperform the pseudo inverse.
For all the cases, the best performance is obtained with the
MAP estimator. It can be noticed that when the number of
zeros is very small, the pseudo inverse acts as a lower bound

Fig. 2. Classification regions of the MAP estimator and
columns of the mixing matrix. The black region corre-
sponds to the event C1;2;3, the gray regions correspond to
events Cu;v , the bright horizontal line corresponds to the
event C1.

for the performance of the MAP estimator, since there is no
additional knowledge about the clustering of the sources.

4. CONCLUSIONS

In this communication, we have studied the problem of sep-
arating the sources in the instantaneous underdetermined
linear mixing problem. The canonical solution given by the
pseudo inverse does not provide a sufficient performance.
Since the pseudo inverse is a matrix that depends only on the
mixing matrix, and not on the individual samples of mea-
surements, its performance is constant over changing spar-
sity of the sources. When the sources are sparse enough,
heuristic approaches can be formulated that outperform the
pseudo inverse solution.

We have considered the case where source densities are
parametrized by a sparsity factor, and presented an MAP es-
timator. By using this additional knowledge of the sources,
the MAP estimator is shown to improve performance over
both the pseudo inverse —that acts as a lower bound when
there is no sparsity on the sources— and the heuristic ap-
proaches. Like the heuristic approaches, the MAP estimator
chooses the “best” inversion matrix on a sample by sample
basis.

As a final conclusion, in order to achieve good perfor-
mance, the underdetermined separation problem requires a
highly sparse representation of the sources. When the orig-
inal sources do not satisfy the sparsity condition, as is the
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Fig. 3. SNR of the source separation by the heuristic meth-
ods 1D (�), m-D (Æ), and m-DL2 (�), the MAP estimator
(4), and the pseudo inverse (solid line).

case with speech signal in the time domain, a suitable linear
transformation should be applied beforehand. At the mo-
ment, the authors are working on sparse representations for
underdetermined speech separation.
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