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ABSTRACT 
 
Fano’s bound identifies a lower bound for the classification error probability and indicates how the information 
transfer through classifier affects its performance.  It was an important step towards linking the information theory 
and pattern recognition.  In this paper, a family of lower bounds is derived using Renyi’s entropy, which yields 
Fano’s lower bound as a special case.  Using a different set of entropy orders, Renyi’s definition also allows the 
construction a family of upper bounds for the probability of error.  This is impossible using Shannon’s definition of 
entropy.  Further analysis to obtain the tightest lower and upper bounds revealed the fact that Fano’s bound is indeed 
the tightest lower bound, and the upper bounds become tighter as the entropy order approaches to one from below.  
Numerical evaluations of the bounds are presented for three digital modulation schemes under AWGN channel. 
 
 
1. INTRODUCTION 
 

Fano's bound is important in that it identifies the link 
between information transfer through a classifier and its 
probability of misclassification [1].  It employs 
Shannon's definition of entropy to arrive at a lower 
bound for the error probability for a classifier.  
However, Fano's bound cannot be utilized in evaluating 
classifier performance because it is a lower bound for a 
quantity we wish to minimize [2].  Our purpose in this 
paper is to present a family of information theoretical 
lower and upper bounds for the error probability of 
classifiers that encompass Fano's inequality as a special 
case. 

We derive our bounds using the uncommon Renyi's 
definition of entropy rather than the widely recognized 
definition of Shannon.  Renyi's definition is a 
parametric family of entropy values with the Shannon's 
entropy being the limit value when the parameter alpha 
of the family approaches to one [3].  In fact, it turns out 
that the existence of this parameter becomes useful in 
formulating an upper bound besides a lower bound for 
two disjoint sets of values it can take.  Fano's inequality, 
corresponding to Renyi's entropy with parameter equal 
to one, then becomes a special case in the family of 
lower bounds.  The conditional entropy of the classifier 
output given the input can be regarded as the average 
information transfer through the classifier, thus the 
version of the bounds which incorporates this quantity is 
significant in understanding the relationship between the 
information transfer and misclassification probability.     

Shannon's marginal entropy of a random variable is 
equal to the sum of the conditional entropy and mutual 
information [4].  The same equality is not valid for 

Renyi's definitions of marginal and conditional 
entropies and mutual information.  However, it is 
possible to obtain lower bounds from Renyi's definitions 
of these information theoretical quantities by making 
use of Jensen's inequality.  Thus, while we put the main 
emphasis on the lower and upper bounds, which 
incorporate the conditional entropy due to the above 
stated reasons, other versions employing mutual 
information and joint entropy are also introduced.  We 
also identify the values of the parameters to obtain the 
tightest lower and upper bounds in among the 
parametric family of bounds. 

In order to evaluate the usefulness of these bounds, 
we introduce a numerical case study, which 
demonstrates that the upper bound we have derived is as 
tight for a very wide range of classifiers as for the one 
with the optimal confusion matrix.  Besides, we present 
the numerical evaluations of our lower and upper 
bounds as well as the commonly used union bounds for 
a QPSK and 16QAM digital communication scheme 
under AWGN channel in order to demonstrate the 
performance of these bounds [5]. 

In a recent work, we have utilized Jensen's 
inequality on Renyi's definition of conditional entropy, 
joint entropy, and mutual information to derive lower 
and upper bounds for the misclassification probability 
of the classifier under consideration [6].  It turns out that 
Fano's bound is still special because it is the tightest in 
the family of lower bounds.  On the other hand, the 
bounds formulated from the conditional entropy reveals 
the relation between the amount of information 
transferred through the classifier and its performance.  
Finally, the examination of the upper bound expression 
reveals valuable insights to our understanding of how 
the probabilities in the confusion matrix of a classifier 



 

 

should be distributed such that its performance is 
optimized. 

The organization of this paper is as follows.  We 
first give a background on the definitions of the 
information theoretical quantities used.  Next, we revisit 
Fano’s bound.  In Section IV, we present the lower and 
upper bounds for probability of error using Renyi’s 
entropy definition.  Following that, we provide two 
numerical examples with analytical solutions, for 
QPSK, 4PAM, and 16QAM communication schemes. 
Finally, we summarize the results in the conclusions. 

 
 

2. BACKGROUND DEFINITIONS 
 
It is possible to express lower and upper bounds for 

the classification error probability using mutual 
information, conditional entropy, and joint entropy.  
Therefore, we first give both the Shannon’s and Renyi’s 
definitions for these quantities.  Later in the following, 
we refer to the classes at the input and output of the 
classifier with the random variables M and W, 
respectively.  The random variable e is used to denote 
the events of erroneous and correct classification with 
probabilities {P(e),1-P(e)}. 
 
Shannon’s Definitions:  For a discrete random variable 
M, whose probability mass function (pmf) is given by 
{ } cN

kkmp 1)( = , Shannon’s entropy is given by [7] 
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The joint entropy, mutual information, and conditional 
entropy can be defined based on the entropy as [1,4,7] 
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and p(mk,,wj) and p(mk|wj) are the joint pmf and the 
conditional pmf of M and W.  The following property is 
satisfied by Shannon’s mutual information [1,4,7]. 
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Renyi’s Definitions: Renyi’s entropy for M is [3] 
 

�
=−

=
cN

k
kmpMH

1
)(log

1
1)( α

α α
          (5) 

 

where α>0 is the entropy order.  Accordingly, we obtain 
the mutual information and conditional entropy as [3] 
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In bracketing the probability of error from above and 
below, the entropy order will be useful as it changes the 
convexity of the function and allows the use of different 
forms of Jensen’s inequality.   

 
 

3. FANO’S BOUND 
 

Fano determined a lower bound to the probability of 
error for the classification in discrete-symbol 
communication systems [1].  The symbols are selected 
from a discrete symbol set consisting of Nc elements 
with each symbol mk having a known prior probability 
p(mk).  The conditional probability of decision being the 
jth symbol when kth symbol was sent is p(wj |mk).  Then, 
Fano’s lower bound for the probability of classification 
error can be written as 
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A common modification in the pattern 
recognition literature is to replace the denominator with 
log(Nc) to accommodate for 2-class problems. In 
addition, the identity in (4) is used to obtain a lower 
bound expressed in terms of the mutual information 
between the input and the output spaces [8]. 

 
 

4. BOUNDS WITH RENYI’S ENTROPY 
 

In this section, we will provide the expressions for 
the lower and upper bounds of the probability of error in 
classification that employ Renyi’s definitions of the 
entropy and mutual information.  As Shannon’s entropy 



 

 

is the limit for Renyi’s entropy when the order 
approaches to one, the limit of the lower bound 
expressions we provide is equal to Fano’s bound.  The 
detailed derivation procedure to obtain these bounds can 
be found in [6].  Here, it suffices to say that the 
derivation extensively employs the Jensen’s inequality 
for convex and concave functions, and the order of 
Renyi’s entropy allows us to control the convexity of 
the expressions.  In conclusion, with some work, we 
obtain the following bounds for the error probability in 
terms of the conditional entropy of the output given the 
input space of the classifier. 
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is the conditional entropy of the output given that we 
make an error when mk is the actual class.  The 
numerator of the upper bound expression is always 
greater than the numerator of the lower bound as a 
property of Renyi’s entropy with varying order.  The 
denominator is an entropy with (Nc-1) terms, hence it is 
smaller than or equal to log(Nc-1).  Thus, the upper 
bound is always greater than the lower bound.  The 
bounds incorporating the joint entropy and mutual 
information can be obtained by replacing the 
conditional entropy with )(),( MHMWH S−γ , and 

);()( MWIWH S γ− , respectively.  In addition, in the 
upper bound with mutual information, the denominator 
is evaluated using Shannon’s entropy [6]. 
 Notice that, as for a given pmf Renyi’s entopy 
increases as order goes to one from the above, the 
tightest lower bound I obtained with Fano’s bound.  
Analyzing the effect of entropy order on the upper 
bound is not that trivial since it appears both in the 
numerator and in the denominator.  For that reason, we 
investigate a simplified example to observe the behavior 
of the upper bound under variations in entropy order. 
 Consider a three-class problem with the following 
confusion matrix where the ijth entropy denotes the 
conditional probability p(wi|mj). 
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Results presented below in Fig. 1 assume equal class 
priors, but experiments with different prior assignments 
showed that the conclusion remains the same; the upper 

bound becomes tighter when the entropy order 
approaches to one.  One other property of the upper 
bound, which is desirable, is exhibits the same level of 
tightness for a broad range of classifiers, whereas, the 
lower bound tends to be loose for these.  The following 
plots the lower and upper bounds with conditional 
entropy as a function of ε in the confusion matrix.  The 
overall probability of error is fixed to 0.2. 
 

 
Figure 1. Bounds for different entropy orders 

 
Although we do not present here any results using 

the mutual information and joint entropy bounds, 
experiments demonstrated that they produce very close 
values to those given by the conditional entropy bounds 
[6].   For Renyi’s entropy, since the identity in (4) is not 
satisfied, we do not get an exact equivalence, whereas in 
Fano’s bound, the three bounds using three different 
quantities are exactly equal. 

Although Renyi’s entropy offers a way to bracket 
the probability of classification error by adjusting the 
order of entropy, the bounds obtained are not free f 
problems.  In some extreme cases, the lower bounds 
may become negative (except Fano’s bound, which 
becomes zero), and the upper bounds may blow up if 
the denominator approaches to zero.  Although, in most 
practical cases this situation will not be encountered, it 
is possible.  

 
 

5. NUMERICAL EXAMPLES 
 

As an example, the information theoretic bounds are 
evaluated for a QPSK modulation scheme over an 
AWGN channel.  The energy per transmitted bit is Eb 
and the PSD for the additive white Gaussian noise is 
N0/2.  We can compute the exact expression for the 
confusion matrix in terms of Q-functions, with the 
assumption of uncorrelated noise in the in-phase and 
quadrature components, in this problem.   
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where ( )0/2 NExQQ bx = .  The priors for symbols 

are assumed equal, i.e. 4,3,2,1,4/1)( == kmp k .  
Fig. 2 shows the theoretical probability of symbol error 
and the lower and upper bounds for that.  We note that, 
we could obtain an arbitrarily tight upper bound by 
simply making the entropy order approach arbitrarily 
close to one.  This process will not introduce any 
additional computation, but numerical accuracy may 
become an issue. 
 

 
Figure 2.  Ps and its bounds for QPSK 

 
As a second example, we evaluate the bounds for a 

4PAM modulation scheme over an AWGN channel.  
This is an example to those problematic situations that 
may occur.  The four classes in 4PAM are located on a 
line, equally separated with the SNR value indicating 
the ratio of the distance between means of classes to the 
variance of the Gaussian distributions centered at these 
means.  As the SNR increases, the denominator 
approaches to zero because the pmf whose entropy is 
evaluated approaches to a δ-distribution.  In terms of the 
bit energy and noise power, we can write the confusion 
matrix as  
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The priors for symbols are again assumed equal.  Fig. 3 
shows the theoretical probability of symbol error and 
the lower and upper bounds for this case.  Note that the 

upper bound blows for some values of SNR, whereas it 
is extremely tight for others.   
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Figure 3.  Ps and its bounds for 4PAM 

 
 Finally, we evaluate the bounds for a 16QAM 
scheme where the signal constellation consists of 16 
classes uniformly distributed on a square area in two 
dimensions.  Again, with the assumption of uncorrelated 
white Gaussian noise in the orthogonal directions, we 
can evaluate the exact confusion matrix, hence the exact 
probability of classification error and the bounds.  The 
results are summarized below in Fig. 4. 
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Figure 4.  Ps and its bounds for 16QAM 

 
 In this section, we presented three simple examples, 
from digital communications, which can be framed as a 
pattern recognition problem, and whose analytical 
solutions can be easily calculated.  In QPSK, two of the 
wrong classes are always located equidistant to the 
actual class, therefore, the denominator of the upper 
bound is the entropy of a pmf with at least two terms, 
hence as SNR increases, the upper bound is still tight.  
On the other hand, the 4PAM example, designed to 
illustrate that unstability of the upper bound is possible, 



 

 

has 3 wrong classes for which the pmf among these may 
approach a δ-distribution very fast for certain SNR 
values.  In turn, the denominator of the upper bound 
may become arbitrarily small causing the bound to 
diverge.  The 16QAM example demonstrates that the 
upper bound may loose accuracy for the same choice of 
entropy order when the number of classes is high.  This 
is due to the denominator expression, which basically 
depends on the probabilities of the closest classes.  As 
the number of classes increases, the number of farther 
neighbors increases.  Therefore, the performance 
degrades. 
 
 
6. CONCLUSIONS 
 

Fano’s bound is a well-known result that provides an 
insight to how probability of classification error is 
linked to the information transfer through a classifier.  It 
is derived from Shannon’s definition of entropy, which 
is a special case of Renyi’s definition, and it is only a 
lower bound for a quantity we wish to minimize.  
Inspired by the work of Fano, we have derived a family 
of lower and upper bounds for the probability of error 
starting from Renyi’s entropy, where the entropy order 
identifies if the expression is a lower or an upper bound.  
Thus, we were able to exploit this property of Renyi’s 
entropy to acquire more information about the 
probability of error.  Interestingly enough, Fano’s 
bound, corresponding to Renyi’s entropy of order one, 
turned out to be the tightest of the lower bounds, and the 
upper bounds became arbitrarily tight as the entropy 
order approached one from below.   

To demonstrate the performance of the bounds in 
action, analytical solutions for QPSK, 4PAM, and 
16QAM digital communication schemes with AWGN 
were evaluated.  The results indicated that the bounds 
are useful in bracketing the probability of error in 
realistic situations. 

Although not illustrated here, it is possible to obtain 
estimates of the bounds by employing various 
nonparametric estimates for the pmfs that are required 
in the computation. The simplest of these estimators is 
the sample-count method.  Our simulations have 
showed that with a reasonably small number of samples 
(around 500), the bounds for QPSK can be estimated 
with a small variance.  Alternatively, neural networks 
can be trained to produce estimates of the desired 
conditional probabilities or nonparametric pdf 
estimation methods like Parzen windowing can be 
employed to obtain pdf estimates, which can then be 
integrated over the appropriate regions in the output 
space to yield estimates of the required conditional 
probabilities. 

As a final remark, in practice, it is possible to obtain 
an estimate of the probability of error with the 

information that is required to obtain an estimate of the 
bounds. Nevertheless, the bounds can still be 
informative and may be used as confirmation 
parameters for these estimates. 
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